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AN  INTRODUCTION  TO 

MATHEMATICS 

CHAPTER    I 

THE   ABSTRACT  NATURE   OF  MATHEMATICS 

The  study  of  mathematics  is  apt  to  com- 
mence in  disappointment.  The  important 

applications  of  the  science,  the  theoretical 
interest  of  its  ideas,  and  the  logical  rigour  of 
its  methods,  all  generate  the  expectation  of 
a  speedy  introduction  to  processes  of  interest. 
We  are  told  that  by  its  aid  the  stars  are 
weighed  and  the  billions  of  molecules  in  a 
drop  of  water  are  counted.  Yet,  like  the 

ghost  of  Hamlet's  father,  this  great  science 
eludes  the  efforts  of  our  mental  weapons 

to  grasp  it — "  'Tis  here,  'tis  there,  'tis 
gone  " — and  what  we  do  see  does  not  suggest the  same  excuse  for  illusiveness  as  sufficed 
for  the  ghost,  that  it  is  too  noble  for 

our  gross  methods.  "  A  show  of  violence," 
if  ever  excusable,  may  surely  be  "offered" 
to  the  trivial  results  which  occupy  the 

7 



8    INTRODUCTION  TO  MATHEMATICS 

pages  of  some  elementary  mathematical 
treatises. 

The  reason  for  this  failure  of  the  science  to 

live  up  to  its  reputation  is  that  its  funda- 
mental ideas  are  not  explained  to  the  student 

disentangled  from  the  technical  procedure 
which  has  been  invented  to  facilitate  their 
exact  presentation  in  particular  instances. 
Accordingly,  the  unfortunate  learner  finds 
himself  struggling  to  acquire  a  knowledge  of 
a  mass  of  details  which  are  not  illuminated 
by  any  general  conception.  Without  a  doubt, 
technical  facility  is  a  first  requisite  for  valu- 

able mental  activity  :  we  shall  fail  to  appre- 
ciate the  rhythm  of  Milton,  or  the  passion  of 

Shelley,  so  long  as  we  find  it  necessary  to 
spell  the  words  and  are  not  quite  certain  of 
the  forms  of  the  individual  letters.  In  this 
sense  there  is  no  royal  road  to  learning.  But 
it  is  equally  an  error  to  confine  attention  to 
technical  processes,  excluding  consideration 
of  general  ideas.  Here  lies  the  road  to 
pedantry. 

The  object  of  the  following  Chapters  is  not 
to  teach  mathematics,  but  to  enable  students 
from  the  very  beginning  of  their  course  to 
know  what  the  science  is  about,  and  why  it  is 
necessarily  the  foundation  of  exact  thought 

as  applied  to  natural  phenomena.  All  allu- sion in  what  follows  to  detailed  deductions 

in  any  part  of  the  science  will  be  inserted 
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merely  for  the  purpose  of  example,  and  care 
will  be  taken  to  make  the  general  argument 
comprehensible,  even  if  here  and  there  some 
technical  process  or  symbol  which  the  reader 
does  not  understand  is  cited  for  the  purpose 
of  illustration. 

The  first  acquaintance  which  most  people 
have  with  mathematics  is  through  arithmetic. 
That  two  and  two  make  four  is  usually  taken 

as  the  t\"pe  of  a  simple  mathematical  pro- 
position which  everyone  will  have  heard  of. 

Arithmetic,  therefore,  will  be  a  good  subject 
to  consider  in  order  to  discover,  if  possible, 
the  most  obvious  characteristic  of  the  science. 
Now,  the  first  noticeable  fact  about  arithmetic 
is  that  it  applies  to  everything,  to  tastes  and 
to  sounds,  to  apples  and  to  angels,  to  the 
ideas  of  the  mind  and  to  the  bones  of  the 

body.  The  nature  of  the  things  is  perfectly 
indifferent,  of  all  things  it  is  true  that  two 
and  two  make  four.  Thus  we  write  down  as 

the  leading  characteristic  of  mathematics 
that  it  deals  with  properties  and  ideas 
which  are  applicable  to  things  just  because 
they  are  things,  and  apart  from  any  particular 
feelings,  or  emotions,  or  sensations,  in  any 
way  connected  with  them.  This  is  what 
is  meant  by  calling  mathematics  an  abstract 
science. 

The  result  which  we  have  reached  deserves 
attention.     It   is   natural   to   think   that   an 
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abstract  science  cannot  be  of  much  import- 
ance in  the  affairs  of  human  hfe,  because  it 

has  omitted  from  its  consideration  every- 
thing of  real  interest.  It  will  be  remembered 

that  Swift,  in  his  description  of  Gulliver's 
voyage  to  Laputa,  is  of  two  minds  on  this 
point.  He  describes  the  mathematicians  of 
that  country  as  silly  and  useless  dreamers, 
whose  attention  has  to  be  awakened  by 

flappers.  Also,  the  mathematical  tailor  mea- 
sures his  height  by  a  quadrant,  and  deduces 

his  other  dimensions  by  a  rule  and  compasses, 

producing  a  suit  of  very  ill-fitting  clothes. 
On  the  other  hand,  the  mathematicians  of 
Laputa,  by  their  marvellous  invention  of  the 
magnetic  island  floating  in  the  air,  ruled  the 
country  and  maintained  their  ascendency 
over  their  subjects.  Swift,  indeed,  lived  at 
a  time  peculiarly  unsuited  for  gibes  at  con- 

temporary mathematicians.  Newton's  Prin- 
cipia  had  just  been  written,  one  of  the  great 
forces  which  have  transformed  the  modern 
world.  Swift  might  just  as  well  have  laughed 
at  an  earthquake. 

But  a  mere  list  of  the  achievements  of 
mathematics  is  an  unsatisfactory  way  of 
arriving  at  an  idea  of  its  importance.  It  is 
worth  while  to  spend  a  little  thought  in 
getting  at  the  root  reason  why  mathematics, 
because  of  its  very  abstractness,  must  always 
remain   one   of    the  most  important  topics 



NATURE   OF   MATHEMATICS      11 

for  thought.  Let  us  try  to  make  clear  to 
ourselves  why  explanations  of  the  order  of 
events  necessarily  tend  to  become  mathe- 
matical. 

Consider  how  all  events  are  interconnected. 
When  we  see  the  lightning,  we  listen  for  the 
thunder ;  when  we  hear  the  wind,  we  look 
for  the  waves  on  the  sea  ;  in  the  chill  autumn, 
the  leaves  fall.  Everywhere  order  reigns,  so 
that  when  some  circumstances  have  been 
noted  we  can  foresee  that  others  will  also  be 

present.  The  progress  of  science  consists  in 
observing  these  interconnections  and  in  show- 

ing with  a  patient  ingenuity  that  the  events 
of  this  evershifting  world  are  but  examples  of 
a  few  general  connections  or  relations  called 
laws.  To  see  what  is  general  in  what  is  par- 

ticular and  what  is  permanent  in  what  is 
transitory  is  the  aim  of  scientific  thought.  In 
the  eye  of  science,  the  fall  of  an  apple,  the 
motion  of  a  planet  round  a  sun,  and  the  cling- 

ing of  the  atmosphere  to  the  earth  are  all 
seen  as  examples  of  the  law  of  gravity.  This 
possibility  of  disentangling  the  most  complex 
evanescent  circumstances  into  various  ex- 

amples of  permanent  laws  is  the  controlling 
idea  of  modern  thought. 

Now  let  us  think  of  the  sort  of  laws  which 
we  want  in  order  completely  to  realize  this 
scientific  ideal.  Our  knowledge  of  the  par- 

ticular facts  of  the  world  around  us  is  gained 
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from  our  sensations.  We  see,  and  hear,  and 
taste,  and  smell,  and  feel  hot  and  cold,  and 
push,  and  rub,  and  ache,  and  tingle.  These 
are  just  our  own  personal  sensations :  my 
toothache  cannot  be  your  toothache,  and  my 
sight  cannot  be  your  sight.  But  we  ascribe 
the  origin  of  these  sensations  to  relations  be- 

tween the  things  which  form  the  external 
world.  Thus  the  dentist  extracts  not  the 
toothache  but  the  tooth.  And  not  only  so, 
we  also  endeavour  to  imagine  the  world  as 
one  connected  set  of  things  which  underlies 
all  the  perceptions  of  all  people.  There  is  not 
one  world  of  things  for  my  sensations  and  an- 

other for  yours,  but  one  world  in  which  we 
both  exist.  It  is  the  same  tooth  both  for 
dentist  and  patient.  Also  we  hear  and  we 
touch  the  same  world  as  we  see. 

It  is  easy,  therefore,  to  understand  that  we 
want  to  describe  the  connections  between 
these  external  things  in  some  way  which  does 
not  depend  on  any  particular  sensations,  nor 
even  on  all  the  sensations  of  any  particular 
person.  The  laws  satisfied  by  the  course  of 
events  in  the  world  of  external  things  are  to 
be  described,  if  possible,  in  a  neutral  uni- 

versal fashion,  the  same  for  blind  men  as  for 
deaf  men,  and  the  same  for  beings  with 
faculties  beyond  our  ken  as  for  normal  human 
beings. 

But  when  we  have  put  aside  our  immediate 
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sensations,  the  most  serviceable  part — from 
its  clearness,  definiteness,  and  miiversality — 
of  what  is  left  is  composed  of  our  general  ideas 
of  the  abstract  formal  properties  of  things; 
in  fact,  the  abstract  mathematical  ideas  men- 

tioned above.  Thus  it  comes  about  that, 

step  by  step,  and  not  realizing  the  full  mean- 
ing of  the  process,  mankind  has  been  led  to 

search  for  a  mathematical  description  of  the 
properties  of  the  universe,  because  in  this  way 
only  can  a  general  idea  of  the  course  of  events 
be  formed,  freed  from  reference  to  particular 
persons  or  to  particular  types  of  sensation. 
For  example,  it  might  be  asked  at  dinner: 

"  ̂ Vhat  was  it  which  underlay  my  sensation 
of  sight,  yours  of  touch,  and  his  of  taste 

and  smell  ?  "  the  answer  being  "  an  apple." 
But  in  its  final  analysis,  science  seeks  to 
describe  an  apple  in  terms  of  the  positions 
and  motions  of  molecules,  a  description  which 

ignores  me  and  you  and  him,  and  also  ig- 
nores sight  and  touch  and  taste  and  smell. 

Thus  mathematical  ideas,  because  they 
are  abstract,  supply  just  what  is  wanted 
for  a  scientific  description  of  the  course  of 
events. 

This  point  has  usually  been  misunderstood, 
from  being  thought  of  in  too  narrow  a  way. 

P\i:hagoras  had  a  glimpse  of  it  when  he  pro- 
claimed that  number  was  the  source  of  all 

things.     In  modern  times  the  belief  that  the 
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ultimate  explanation  of  all  things  was  to  be 
found  in  Newtonian  mechanics  was  an  adum- 

bration of  the  truth  that  all  science  as  it 

grows  towards  perfection  becomes  mathe- 
matical in  its  ideas. 



CHAPTER   II 

VARIABLES 

Mathematics  as  a  science  commenced  when 

first  someone,  probably  a  Greek,  proved  pro- 
positions about  any  things  or  about  some 

things,  without  specification  of  definite  par- 
ticular things.  These  propositions  were  first 

enunciated  by  the  Greeks  for  geometry ;  and, 
accordingly,  geometry  was  the  great  Greek 
mathematical  science.  After  the  rise  of  geo- 

metry centuries  passed  away  before  algebra 
made  a  really  effective  start,  despite  some 
faint  anticipations  by  the  later  Greek  mathe- 
maticians. 

The  ideas  of  any  and  of  some  are  intro- 
duced into  algebra  by  the  use  of  letters,  in- 

stead of  the  definite  numbers  of  arithmetic. 

Thus,  instead  of  saying  that  2+3=3+2,  in 
algebra  we  generalize  and  say  that,  if  x  and 
y  stand  for  any  two  numbers,  then  x  +t/  =y  +x. 
Again,  in  the  place  of  saying  that  3  >  2,  we 
generalize  and  say  that  if  x  be  any  number 
there  exists  some  number  (or  numbers)  y  such 
that  y  >  X.  We  may  remark  in  passing  that 
this  latter  assumption — for  when  put  in  its 
strict  ultimate  form  it  is  an  assumption — is 

16 
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of  vital  importance,  both  to  philosophy  and 
to  mathematics  ;  for  by  it  the  notion  of  in- 

finity is  introduced.  Perhaps  it  required  the 
introduction  of  the  arabic  numerals,  by  which 
the  use  of  letters  as  standing  for  definite 
numbers  has  been  completely  discarded  in 
mathematics,  in  order  to  suggest  to  mathe- 

maticians the  technical  convenience  of  the 
use  of  letters  for  the  ideas  of  any  number 
and  some  number.  The  Romans  would  have 
stated  the  number  of  the  year  in  which  this 
is  written  in  the  form  MDCCCCX.,  whereas 
we  write  it  1910,  thus  leaving  the  letters  for 
the  other  usage.  But  this  is  merely  a  specu- 

lation. After  the  rise  of  algebra  the  differ- 
ential calculus  was  invented  by  Newton  and 

Leibniz,  and  then  a  pause  in  the  progress 
of  the  philosophy  of  mathematical  thought 
occurred  so  far  as  these  notions  are  concerned  ; 
and  it  was  not  till  within  the  last  few  years 
that  it  has  been  realized  how  fundamental 

any  and  some  are  to  the  very  nature  of  mathe- 
matics, with  the  result  of  opening  out  still 

further  subjects  for  mathematical  explora- 
tion. 

Let  us  now  make  some  simple  algebraic 
statements,  with  the  object  of  understanding 
exactly  how  these  fundamental  ideas  occur. 

(1)  For  any  number  x,  cc-{-2=2-{-x ; 
(2)  For  some  number  x,  a;+2=3  ; 
(3)  For  some  number  x,  x4-2>3. 
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The  first  point  to  notice  is  the  possibilities 
contained  in  the  meaning  of  some,  as  here 

used.  Since  x-\-2=2-^x  for  any  number  cv, 
it  is  true  for  some  number  x.  Thus,  as  here 
used,  some  does  not  exclude  any.  Again,  in 
the  second  example,  there  is,  in  fact,  only  one 
number  x,  such  that  a; +2  =3,  namely,  only 
the  number  1.  Thus  the  some  may  be  one 
number  only.  But  in  the  third  example, 
any  number  x  which  is  greater  than  1  gives 
cT-]-2>3.  Hence  there  are  an  infinite  num- 

ber of  numbers  which  answer  to  the  some 

number  in  this  case.  Thus  some  may  be  any- 
thing between  any  and  one  only,  including 

both  these  limiting  cases. 
It  is  natural  to  supersede  the  statements 

(2)  and  (3)  by  the  questions  : 

(2')  For  what  number  x  is  a? +2  =3; 
(3')  For  what  numbers  x  is  x-{-2>3. 

Considering  (2'),  a; +2  =3  is  an  equation,  and 
it  is  easy  to  see  that  its  solution  is  x  =3  —2  =  1. 
When  we  have  asked  the  question  implied  in 
the  statement  of  the  equation  a:-}-2=3,  x  is 
called  the  unknown.  The  object  of  the  solu- 

tion of  the  equation  is  the  determination  of 
the  unknown.  Equations  are  of  great  im- 

portance in  mathematics,  and  it  seems  as 

though  (2')  exemplified  a  much  more  thorough- 
going and  fundamental  idea  than  the  original 

statement  (2).  This,  however,  is  a  complete 
mistake.     The    idea    of    the    undetermined 
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"  variable  "  as  occurring  in  the  use  of  "  some  " 
or  "  any "  is  the  really  important  one  in 
mathematics  ;  that  of  the  "  unknown  "  in  an 
equation,  which  is  to  be  solved  as  quickly  as 
possible,  is  only  of  subordinate  use,  though 
of  course  it  is  very  important.  One  of  the 
causes  of  the  apparent  triviality  of  much  of 
elementary  algebra  is  the  preoccupation  of 
the  text-books  with  the  solution  of  equations. 
The  same  remark  applies  to  the  solution  of 

the  inequality  (3')  as  compared  to  the  original 
statement  (3). 

But  the  majority  of  interesting  formulae, 
especially  when  the  idea  of  some  is  present, 
involve  more  than  one  variable.  For  ex- 

ample, the  consideration  of  the  pairs  of  num- 
bers X  and  y  (fractional  or  integral)  which 

satisfy  x-\-y=\  involves  the  idea  of  two  corre- 
lated variables,  x  and  y.  When  two  variables 

are  present  the  same  two  main  types  of 
statement  occur.  For  example,  (1)  for 
any  pair  of  numbers,  x  and  y,  x-\-y=y-\-Xy 
and  (2)  for  some  pairs  of  numbers,  x  and  t/, 
x+y=l. 

The  second  type  of  statement  invites  con- 
sideration of  the  aggregate  of  pairs  of  num- 

bers which  are  bound  together  by  some  fixed 
relation — in  the  case  given,  by  the  relation 
x-\-y=l.  One  use  of  formulas  of  the  first 
type,  true  for  any  pair  of  numbers,  is  that  by 
them  formulae   of  the   second   type   can  be 



VARIABLES  19 

thrown  into  an  indefinite  number  of  equiva- 
lent forms.  For  example,  the  relation  cc-\-y 

=1  is  equivalent  to  the  relations 

y+x=l,    {x-y)+2y=l,    6x+6y=6, 

and  so  on.  Thus  a  skilful  mathematician 
uses  that  equivalent  form  of  the  relation 
under  consideration  which  is  most  convenient 
for  his  immediate  purpose. 

It  is  not  in  general  true  that,  when  a  pair 
of  terms  satisfy  some  fixed  relation,  if  one  of 
the  terms  is  given  the  other  is  also  definitely 
determined.  For  example,  when  x  and  y 
satisfy  y^=x,  if  ir=4,  y  can  be  ±2,  thus, 
for  any  positive  value  of  x  there  are  alter- 

native values  for  y.  Also  in  the  relation 
x-\-y>l,  when  either  x  or  y  is  given,  an 
indefinite  number  of  values  remain  open  for 
the  other. 

Again  there  is  another  important  point  to 
be  noticed.  If  we  restrict  ourselves  to  posi- 

tive numbers,  integral  or  fractional,  in  con- 
sidering the  relation  x+y=l,  then,  if  either 

a;  or  f/  be  greater  than  1,  there  is  no  positive 
number  which  the  other  can  assume  so  as  to 

satisfy  the  relation.  Thus  the  "field"  of 
the  relation  for  x  is  restricted  to  numbers  less 

than  1,  and  similarly  for  the  "  field  "  open 
to  y.  Again,  consider  integral  numbers  only, 
positive  or  negative,  and  take  the  relation 
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y'^=Xi  satisfied  by  pairs  of  such  numbers. 
Then  whatever  integral  value  is  given  to  y, 
X  can  assume  one  corresponding  integral 

value.  So  the  "  field  "  for  y  is  unrestricted 
among  these  positive  or  negative  integers. 
But  the  "  field  "  for  x  is  restricted  in  two 
ways.  In  the  first  place  x  must  be  positive, 
and  in  the  second  place,  since  y  is  to  be  in- 

tegral, X  must  be  a  perfect  square.  Accord- 
ingly, the  "field"  of  x  is  restricted  to  the  set 

of  integers  1^,  2^,  32,  42,  and  so  on,  i.e.,  to  1, 
4,  9,  16,  and  so  on. 

The  study  of  the  general  properties  of  a 
relation  between  pairs  of  numbers  is  much 
facilitated  by  the  use  of  a  diagram  constructed 
as  follows : 

/ 

B V X p 
1 N 

\. 

y 

y    \^ 

0  X   M  I  A 

Fig.    1. 

Draw  two  lines  OX  and  OF  at  right  angles ; 
let  any  number  x  be  represented  by  x  units 
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(in  any  scale)  of  length  along  OX,  any  num- 
ber y  by  y  units  (in  any  scale)  of  length  along 

OY.  Thus  if  OM,  along  OZ,  be  x  units  in 

length,  and  OX,  along  OF,  be  y  units  in  length, 

by  completing  the  parallelogram  OMPN  we 

find  a  point  P  which  corresponds  to  the  pair 
of  numbers  x  and  y.  To  each  point  there 

corresponds  one  pair  of  numbers,  and  to  each 

pair  of  numbers  there  corresponds  one  point. 

The  pair  of  numbers  are  called  the  co- 
ordinates of  the  point.  Then  the  points 

whose  coordinates  satisfy  some  fixed  rela- 
tion can  be  indicated  in  a  convenient  way, 

by  drawing  a  line,  if  they  all  lie  on  a  line, 
or  by  shading  an  area  if  they  are  all  points 
in  the  area.  If  the  relation  can  be  repre- 

sented by  an  equation  such  as  x+y=l,  or 
y^=x,  then  the  points  lie  on  a  line,  which  is 
straight  in  the  former  case  and  curved  in 
the  latter.  For  example,  considering  only 

positive  numbers,  the  points  whose  co- 
ordinates satisfy  x-]-y=l  lie  on  the  straight 

line  AB  in  Fig.  1,  where  0.^=1  and  0^=1. 
Thus  this  segment  of  the  straight  line  AB 

gives  a  pictorial  representation  of  the  proper- 
ties of  the  relation  under  the  restriction  to 

positive  numbers. 
Another  example  of  a  relation  between  two 

variables  is  afforded  by  considering  the  varia- 
tions in  the  pressure  and  volume  of  a  given 

mass  of  some  gaseous  substance — such  as  air 
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or  coal-gas  or  steam — at  a  constant  tempera- 
ture. Let  V  be  the  number  of  cubic  feet  in 

its  volume  and  p  its  pressure  in  lb.  weight 
per  square  inch.  Then  the  law,  known  as 

Boyle's  law,  expressing  the  relation  between 
p  and  V  as  both  vary,  is  that  the  product 
yv  is  constant,  always  supposing  that  the 
temperature  does  not  alter.  Let  us  suppose, 
for  example,  that  the  quantity  of  the  gas 
and  its  other  circumstances  are  such  that 
we  can  put  pz;=l  (the  exact  number  on 
the  right-hand  side  of  the  equation  makes 
no  essential  difference). 

Then  in  Fig.  2  we  take  two  lines,  OV  and 
OP  J  at  right  angles  and  draw  OM  along  OV 
to  represent  v  units  of  volume,  and  ON  along 
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OP  to  represent  p  units  of  pressure.  Then 
the  point  Q,  which  is  found  by  completing  the 
parallelogram  MONQ,  represents  the  state  of 
the  gas  when  its  volume  is  v  cubic  feet  and  its 
pressure  is  p  lb.  weight  per  square  inch.  If 
the  circumstances  of  the  portion  of  gas  con- 

sidered are  such  that  pv=l,  then  all  these 
points  Q  which  correspond  to  any  possible 
state  of  this  portion  of  gas  must  lie  on  the 
curved  line  ABC,  which  includes  all  points 
for  which  p  and  v  are  positive,  and  pv=l. 
Thus  this  curved  line  gives  a  pictorial  repre- 

sentation of  the  relation  holding  between  the 
volume  and  the  pressure.  When  the  pressure 
is  very  big  the  corresponding  point  Q  must 
be  near  C,  or  even  beyond  C  on  the  undrawn 
part  of  the  curve ;  then  the  volume  will  be 
very  small.  When  the  volume  is  big  Q  will 
be  near  to  A,  or  beyond  A  ;  and  then  the 
pressure  will  be  small.  Notice  that  an  en- 

gineer or  a  physicist  may  want  to  know  the 
particular  pressure  corresponding  to  some 
definitely  assigned  volume.  Then  we  have 
the  case  of  determining  the  unknown  p  when 
i;  is  a  knowTi  number.  But  this  is  only  in 
particular  cases.  In  considering  generally 
the  properties  of  the  gas  and  how  it  will  be- 

have, he  has  to  have  in  his  mind  the  general 
form  of  the  whole  curve  ABC  and  its  general 
properties.  In  other  words  the  really  funda- 

mental idea  is  that  of  the  pair  of  variables 
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satisfying  the  relation  pr;==l.  This  example 
illustrates  how  the  idea  of  variables  is  funda- 

mental, both  in  the  applications  as  well  as  in 
the  theory  of  mathematics. 



CHAPTER    III 

METHODS   OF  APPLICATION 

The  way  in  which  the  idea  of  variables 
satisfying  a  relation  occurs  in  the  applications 
of  mathematics  is  worth  thought,  and  by 
devoting  some  time  to  it  we  shall  clear  up 
our  thoughts  on  the  whole  subject. 

Let  us  start  with  the  simplest  of  examples  : 
— Suppose  that  building  costs  Is.  per  cubic 
foot  and  that  205.  make  £1.  Then  in  all 
the  complex  circumstances  which  attend  the 
building  of  a  new  house,  amid  all  the  various 
sensations  and  emotions  of  the  owner,  the 
architect,  the  builder,  the  workmen,  and  the 
onlookers  as  the  house  has  grown  to  comple- 

tion, this  fixed  correlation  is  by  the  law 
assumed  to  hold  between  the  cubic  content 
and  the  cost  to  the  owner,  namely  that  if  x 
be  the  number  of  cubic  feet,  and  £y  the  cost, 
then  20y=x.  This  correlation  of  x  and  y  is 
assumed  to  be  true  for  the  building  of  any 
house  by  any  owner.  Also,  the  volume  of 
the  house  and  the  cost  are  not  supposed  to 
have  been  perceived  or  apprehended  by  any 
particular  sensation  or  faculty,   or   by  any 

25 
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particular  man.  They  are  stated  in  an  ab- 
stract general  way,  with  complete  indiffer- 

ence to  the  owner's  state  of  mind  when  he  has 
to  pay  the  bill. 
Now  think  a  bit  further  as  to  what  all  this 

means.  The  building  of  a  house  is  a  com- 
plicated set  of  circumstances.  It  is  im- 

possible to  begin  to  apply  the  law,  or  to  test 
it,  unless  amid  the  general  course  of  events 
it  is  possible  to  recognize  a  definite  set  of 
occurrences  as  forming  a  particular  instance 
of  the  building  of  a  house.  In  short,  we  must 
know  a  house  when  we  see  it,  and  must  recog- 

nize the  events  which  belong  to  its  building. 
Then  amidst  these  events,  thus  isolated  in 
idea  from  the  rest  of  nature,  the  two  elements 
of  the  cost  and  cubic  content  must  be  deter- 

minable ;  and  when  they  are  both  determined, 
if  the  law  be  true,  they  satisfy  the  general 
formula 

20y=x. 

But  is  the  law  true  ?  Anyone  who  has  had 
much  to  do  with  building  will  know  that  we 
have  here  put  the  cost  rather  high.  It  is 
only  for  an  expensive  type  of  house  that  it 
will  work  out  at  this  price.  This  brings  out 
another  point  which  must  be  made  clear. 
While  we  are  making  mathematical  calcula- 

tions connected  with  the  formula  20y=Xy  it 
is  indifferent  to  us  whether  the  law  be  true  or 
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false.  In  fact,  the  very  meanings  assigned 
to  X  and  y,  as  being  a  number  of  cubic  feet 
and  a  number  of  pounds  sterling,  are  in- 

different. During  the  mathematical  investi- 
gation we  are,  in  fact,  merely  considering  the 

properties  of  this  correlation  between  a  pair 
of  variable  numbers  x  and  y.  Our  results 
will  apply  equally  well,  if  we  interpret  y  to 
mean  a  number  of  fishermen  and  x  the  num- 

ber of  fish  caught,  so  that  the  assumed  law 
is  that  on  the  average  each  fisherman  catches 
twenty  fish.  The  mathematical  certainty  of 
the  investigation  only  attaches  to  the  results 
considered  as  giving  properties  of  the  corre- 

lation 20y=x  between  the  variable  pair  of 
numbers  x  and  y.  There  is  no  mathematical 
certainty  whatever  about  the  cost  of  the 
actual  building  of  any  house.  The  law  is  not 
quite  true  and  the  result  it  gives  will  not  be 
quite  accurate.  In  fact,  it  may  well  be  hope- 

lessly \vrong. 
Now  all  this  no  doubt  seems  very  obvious. 

But  in  truth  with  more  complicated  instances 
there  is  no  more  common  error  than  to  assume 

that,  because  prolonged  and  accurate  mathe- 
matical calculations  have  been  made,  the 

application  of  the  result  to  some  fact  of 
nature  is  absolutely  certain.  The  conclusion 
of  no  argument  can  be  more  certain  than  the 
assumptions  from  which  it  starts.  All  mathe- 

matical   calculations    about    the    course    of 
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nature  must  start  from  some  assumed  law  of 
nature,  such,  for  instance,  as  the  assumed 
law  of  the  cost  of  building  stated  above. 
Accordingly,  however  accurately  we  have 
calculated  that  some  event  must  occur,  the 
doubt  always  remains — Is  the  law  true  ?  If 
the  law  states  a  precise  result,  almost  cer- 

tainly it  is  not  precisely  accurate  ;  and  thus 
even  at  the  best  the  result,  precisely  as  calcu- 

lated, is  not  likely  to  occur.  But  then  we 
have  no  faculty  capable  of  observation  with 
ideal  precision,  so,  after  all,  our  inaccurate 
laws  may  be  good  enough. 
We  will  now  turn  to  an  actual  case,  that 

of  Newton  and  the  Law  of  Gravity.  This  law 
states  that  any  two  bodies  attract  one  an- 

other with  a  force  proportional  to  the  product 
of  their  masses,  and  inversely  proportional  to 
the  square  of  the  distance  between  them. 
Thus  if  m  and  M  are  the  masses  of  the  two 
bodies,  reckoned  in  lbs.  say,  and  d  miles  is 
the  distance  between  them,  the  force  on  either 
body,  due  to  the  attraction  of  the  other  and 

mM 
directed  towards  it,  is  proportional  to  — ^  ; 
thus  this  force  can  be  written  as  equal  to 

y  where  k  is  a  definite  number  depending 

on  the  absolute  magnitude  of  this  attraction 
and  also  on  the  scale  by  which  we  choose  to 
measure  forces.     It  is  easy  to  see  that,  if  we 
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wish  to  reckon  in  terms  of  forces  such  as  the 
weight  of  a  mass  of  1  lb.,  the  number  which 
k  represents  must  be  extremely  small ;  for 
when  771  and  M  and  d  are  each  put  equal  to 

1,  — jf-  becomes  the  grav-itational  attraction 

of  two  equal  masses  of  1  lb.  at  the  distance  of 
one  mile,  and  this  is  quite  inappreciable. 

However,  we  have  now  got  our  formula  for 
the  force  of  attraction.     If  we  call  this  force 

F,  it  is  F=k—^t  giving  the  correlation  be- 
tween the  variables  F,  m,  M,  and  d.  We  all 

know  the  story  of  how  it  was  found  out. 
Newton,  it  states,  was  sitting  in  an  orchard 
and  watched  the  fall  of  an  apple,  and  then 
the  law  of  universal  gravitation  burst  upon 
his  mind.  It  may  be  that  the  final  formu- 

lation of  the  law  occurred  to  him  in  an 

orchard,  as  well  as  elsewhere — and  he  must 
have  been  somewhere.  But  for  our  purposes 
it  is  more  instructive  to  dwell  upon  the  vast 
amount  of  preparatory  thought,  the  product 
of  many  minds  and  many  centuries,  which 
was  necessary  before  this  exact  law  could  be 
formulated.  In  the  first  place,  the  mathe- 

matical habit  of  mind  and  the  mathematical 
procedure  explained  in  the  previous  two 
chapters  had  to  be  generated ;  otherwise 
Newton  could  never  have  thought  of  a  formula 
representing  the  force  bet^veen  any  two  masses 
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at  any  distance.  Again,  what  are  the  mean- 
ings of  the  terms  employed,  Force,  Mass,  Dis- 

tance ?  Take  the  easiest  of  these  terms. 
Distance.  It  seems  very  obvious  to  us  to 
conceive  all  material  things  as  forming  a  de- 

finite geometrical  whole,  such  that  the  dis- 
tances of  the  various  parts  are  measurable  in 

terms  of  some  unit  length,  such  as  a  mile  or 
a  yard.  This  is  almost  the  first  aspect  of  a 
material  structure  which  occurs  to  us.  It  is 
the  gradual  outcome  of  the  study  of  geometry 
and  of  the  theory  of  measurement.  Even 
now,  in  certain  cases,  other  modes  of  thought 
are  convenient.  In  a  mountainous  country 
distances  are  often  reckoned  in  hours.  But 
leaving  distance,  the  other  terms.  Force  and 
Mass,  are  much  more  obscure.  The  exact 
comprehension  of  the  ideas  which  Newton 
meant  to  convey  by  these  words  was  of  slow 
growth,  and,  indeed,  Newton  himself  was  the 
first  man  who  had  thoroughly  mastered  the 
true  general  principles  of  Dynamics. 

Throughout  the  middle  ages,  under  the  in- 
fluence of  Aristotle,  the  science  was  entirely 

misconceived.  Newton  had  the  advantage  of 
coming  after  a  series  of  great  men,  notably 
Galileo,  in  Italy,  who  in  the  previous  two 
centuries  had  reconstructed  the  science  and 
had  invented  the  right  way  of  thinking  about 
it.  He  completed  their  work.  Then,  finally, 
having  the  ideas  of  force,  mass,  and  distance, 
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clear  and  distinct  in  his  mind,  and  realising 
their  importance  and  their  relevance  to  the 
fall  of  an  apple  and  the  motions  of  the  planets, 
he  hit  upon  the  law  of  gravitation  and  proved 
it  to  be  the  formula  always  satisfied  in  these 
various  motions. 

The  vital  point  in  the  application  of  mathe- 
matical formulae  is  to  have  clear  ideas  and  a 

correct  estimate  of  their  relevance  to  the 
phenomena  under  observation.  No  less  than 
ourselves,  our  remote  ancestors  were  im- 

pressed with  the  importance  of  natural 
phenomena  and  with  the  desirability  of  taking 
energetic  measures  to  regulate  the  sequence 
of  events.  Under  the  influence  of  irrelevant 

ideas  they  executed  elaborate  religious  cere- 
monies to  aid  the  birth  of  the  new  moon,  and 

performed  sacrifices  to  save  the  sun  during 
the  crisis  of  an  eclipse.  There  is  no  reason  to 
believe  that  they  were  more  stupid  than  we 
are.  But  at  that  epoch  there  had  not  been 
opportunity  for  the  slow  accumulation  of 
clear  and  relevant  ideas. 

The  sort  of  way  in  which  physical  sciences 
grow  into  a  form  capable  of  treatment  by 
mathematical  methods  is  illustrated  by  the 
history  of  the  gradual  growth  of  the  science 
of  electromagnetism.  Thunderstorms  are 
events  on  a  grand  scale,  arousing  terror  in 
men  and  even  animals.  From  the  earliest 
times  they  must  have  been  objects  of  wild 
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and  fantastic  hypotheses,  though  it  may  be 
doubted  whether  our  modern  scientific  dis- 

coveries in  connection  with  electricity  are  not 
more  astonishing  than  any  of  the  magical 
explanations  of  savages.  The  Greeks  knew 
that  amber  (Greek,  electron)  when  rubbed 
would  attract  light  and  dry  bodies.  In 
1600  A.D.,  Dr.  Gilbert,  of  Colchester,  published 
the  first  work  on  the  subject  in  which  any 
scientific  method  is  followed.  He  made  a 

list  of  substances  possessing  properties  similar 
to  those  of  amber  ;  he  must  also  have  the 
credit  of  connecting,  however  vaguely,  electric 
and  magnetic  phenomena.  At  the  end  of  the 
seventeenth  and  throughout  the  eighteenth 
century  knowledge  advanced.  Electrical 
machines  were  made,  sparks  were  obtained 

from  them ;  and  the  Leyden  Jar  was  in- 
vented, by  which  these  effects  could  be  in- 

tensified. Some  organised  knowledge  was 

being  obtained ;  but  still  no  relevant  mathe- 
matical ideas  had  been  found  out.  Franklin, 

in  the  year  1752,  sent  a  kite  into  the  clouds 

and  proved  that  thunderstorms  were  elec- 
trical. 

Meanwhile  from  the  earliest  epoch  (2634  B.C.) 
the  Chinese  had  utilized  the  characteristic 

property  of  the  compass  needle,  but  do  not 
seem  to  have  connected  it  with  any  theoretical 
ideas.  The  really  profound  changes  in  human 
life  all  have  their  ultimate  origin  in  knowledge 
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pursued  for  its  own  sake.  The  use  of  the  com- 
pass was  not  introduced  into  Europe  till  the  end 

of  the  twelfth  century  a.d.,  more  than  3000 

years  after  its  first  use  in  China.  The  import- 
ance which  the  science  of  electromagnetisra 

has  since  assumed  in  every  department  of 
human  life  is  not  due  to  the  superior  practical 
bias  of  Europeans,  but  to  the  fact  that  in  the 
West  electrical  and  magnetic  phenomena 
were  studied  by  men  who  were  dominated  by 
abstract  theoretic  interests. 

The  discovery  of  the  electric  current  is  due 
to  two  Italians,  Galvani  in  1780,  and  Volta 
in  1792.  This  great  invention  opened  a  new 
series  of  phenomena  for  investigation.  The 
scientific  world  had  now  three  separate, 
though  allied,  groups  of  occurrences  on  hand 

— ^the  effects  of  "  statical  "  electricity  arising 
from  frictional  electrical  machines,  the  mag- 

netic phenomena,  and  the  effects  due  to 
electric  currents.  From  the  end  of  the 

eighteenth  century  onwards,  these  three  lines 
of  investigation  were  quickly  inter-connected 
and  the  modern  science  of  electromagnetisra 
was  constructed,  which  now  threatens  to 
transform  human  life. 

Mathematical  ideas  now  appear.  During 
the  decade  1780  to  1789,  Coulomb,  a  French- 

man, proved  that  magnetic  poles  attract  or 
repel  each  other,  in  proportion  to  the  inverse 
square  of  their  distances,  and  also  that  the 
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same  law  holds  for  electric  charges — laws 
curiously  analogous  to  that  of  gravitation. 
In  1820,  Oersted,  a  Dane,  discovered  that 
electric  currents  exert  a  force  on  magnets, 
and  almost  immediately  afterwards  the 
mathematical  law  of  the  force  was  correctly 
formulated  by  Ampere,  a  Frenchman,  who 
also  proved  that  two  electric  currents  exerted 
forces  on  each  other.  "The  experimental  in- 

vestigation by  which  Ampere  established  the 
law  of  the  mechanical  action  between  electric 
currents  is  one  of  the  most  brilliant  achieve- 

ments in  science.  The  whole,  theory  and 
experiment,  seems  as  if  it  had  leaped,  full- 
grown  and  full  armed,  from  the  brain  of 

the  '  Newton  of  Electricity.'  It  is  perfect 
in  form,  and  unassailable  in  accuracy,  and  it 
is  summed  up  in  a  formula  from  which  all 
the  phenomena  may  be  deduced,  and  which 
must  always  remain  the  cardinal  formula  of 

electro-dynamics."  * The  momentous  laws  of  induction  between 
currents  and  between  currents  and  magnets 
were  discovered  by  Michael  Faraday  in  1831- 
32.  Faraday  was  asked:  "What  is  the  use 
of  this  discovery  ?  "  He  answered :  "  What  is 
the  use  of  a  child — it  grows  to  be  a  man." 
Faraday's  child  has  grown  to  be  a  man  and 
is  now  the  basis  of  all  the  modern  applications 

•  Electricity  and  Magnetism,  Clerk  Maxwell,  Vol,  II., 
ch.  iii. 
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of  electricity.  Faraday  also  reorganized  the 
whole  theoretical  conception  of  the  science. 
His  ideas,  which  had  not  been  fully  under- 

stood by  the  scientific  world,  were  extended 
and  put  into  a  directly  mathematical  form  by 
Clerk  Maxwell  in  1873.  As  a  result  of  his 

mathematical  investigations,  Maxwell  recog- 
nized that,  under  certain  conditions,  electrical 

vibrations  ought  to  be  propagated.  He  at 
once  suggested  that  the  vibrations  which 
form  light  are  electrical.  This  suggestion  has 
since  been  verified,  so  that  now  the  whole 
theory  of  light  is  nothing  but  a  branch  of  the 
great  science  of  electricity.  Also  Herz,  a 

German,  in  1888,  following  on  Maxwell's 
ideas,  succeeded  in  producing  electric  vibra- 

tions by  direct  electrical  methods  His 
experiments  are  the  basis  of  our  wireless 
telegraphy. 

In  more  recent  years  even  more  funda- 
mental discoveries  have  been  made,  and  the 

science  continues  to  grow  in  theoretic  import- 
ance and  in  practical  interest.  This  rapid 

sketch  of  its  progress  illustrates  how,  by  the 
gradual  introduction  of  the  relevant  theoretic 
ideas,  suggested  by  experiment  and  them- 

selves suggesting  fresh  experiments,  a  whole 
mass  of  isolated  and  even  trivial  phenomena 
are  welded  together  into  one  coherent  science, 
in  which  the  results  of  abstract  mathematical 

deductions,  starting  from  a  few  simple  as- 



36    INTRODUCTION  TO  MATHEI^IATICS 

sumed  laws,  supply  the  explanation  to  the 
complex  tangle  of  the  course  of  events. 

Finally,  passing  beyond  the  particular 
sciences  of  electromagnetism  and  light,  we 
can  generalize  our  point  of  view  still  further, 
and  direct  our  attention  to  the  growth  of 
mathematical  physics  considered  as  one  great 
chapter  of  scientific  thought.  In  the  first 
place,  what  in  the  barest  outlines  is  the  story 
of  its  growth  ? 

It  did  not  begin  as  one  science,  or  as  the 
product  of  one  band  of  men.  The  Chaldean 
shepherds  watched  the  skies,  the  agents  of 
Government  in  Mesopotamia  and  Egypt 
measured  the  land,  priests  and  philosophers 
brooded  on  the  general  nature  of  all  things. 
The  vast  mass  of  the  operations  of  nature 
appeared  due  to  mysterious  unfathomable 
forces.  "  The  wind  bloweth  where  it  listeth  " 
expresses  accurately  the  blank  ignorance  then 
existing  of  any  stable  rules  followed  in  detail 
by  the  succession  of  phenomena.  In  broad  out- 

line, then  as  now,  a  regularity  of  events  was 
patent.  But  no  minute  tracing  of  their  inter- 

connection was  possible,  and  there  was  no 
knowledge  how  even  to  set  about  to  construct 
such  a  science. 

Detached  speculations,  a  few  happy  or  un- 
happy shots  at  the  nature  of  things,  formed 

the  utmost  which  could  be  produced. 
Meanwhile  land-surveys  had  produced  geo- 
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metry,  and  the  observations  of  the  heavens 
disclosed  the  exact  regularity  of  the  solar 
system.  Some  of  the  later  Greeks,  such  as 
Archimedes,  had  just  views  on  the  elementary 
phenomena  of  hydrostatics  and  optics.  In- 

deed, Archimedes,  who  combined  a  genius  for 
mathematics  with  a  physical  insight,  must 
rank  with  Newton,  who  lived  nearly  two 
thousand  years  later,  as  one  of  the  founders 
of  mathematical  physics.  He  lived  at  Syra- 

cuse, the  great  Greek  city  of  Sicily.  When 
the  Romans  besieged  the  town  (in  210  to 
212  B.C.),  he  is  said  to  have  burned  their  ships 
by  concentrating  on  them,  by  means  of 

mirrors,  the  sun's  rays.  The  story  is  highly 
improbable,  but  is  good  evidence  of  the  repu- 

tation which  he  had  gained  among  his  con- 
temporaries for  his  knowledge  of  optics.  At 

the  end  of  this  siege  he  was  killed.  According 
to  one  account  given  by  Plutarch,  in  his  life  of 
Marcellus,  he  was  found  by  a  Roman  soldier 
absorbed  in  the  study  of  a  geometrical  diagram 
which  he  had  traced  on  the  sandy  floor  of  his 
room.  He  did  not  immediately  obey  the  orders 
of  his  captor,  and  so  was  killed.  For  the  credit 
of  the  Roman  generals  it  must  be  said  that 
the  soldiers  had  orders  to  spare  him.  The 
internal  evidence  for  the  other  famous  story 
of  him  is  very  strong ;  for  the  discovery 
attributed  to  him  is  one  eminently  worthy  of 
his  genius  for  mathematical  and  physical  re- 
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search.  Luckily,  it  is  simple  enough  to  be 
explained  here  in  detail.  It  is  one  of  the  best 
easy  examples  of  the  method  of  application 
of  mathematical  ideas  to  physics. 

Hiero,  King  of  Syracuse,  had  sent  a  quan- 
tity of  gold  to  some  goldsmith  to  form  the 

material  of  a  crown.  He  suspected  that  the 
craftsmen  had  abstracted  some  of  the  gold 
and  had  supplied  its  place  by  alloying  the 
remainder  with  some  baser  metal.  Hiero 
sent  the  crown  to  Archimedes  and  asked  him 

to  test  it.  In  these  days  an  indefinite  num- 
ber of  chemical  tests  would  be  available. 

But  then  Archimedes  had  to  think  out  the 
matter  afresh.  The  solution  flashed  upon 
him  as  he  lay  in  his  bath.  He  jumped 
up  and  ran  through  the  streets  to  the 
palace,  shouting  Eureka!  Eureka!  (I  have 
found  it,  I  have  found  it).  This  day,  if  we 
knew  which  it  was,  ought  to  be  celebrated  as 
the  birthday  of  mathematical  physics  ;  the 
science  came  of  age  when  Newton  sat  in  his 
orchard.  Archimedes  had  in  truth  made  a 
great  discovery.  He  saw  that  a  body  when 
immersed  in  water  is  pressed  upwards  by  the 
surrounding  water  with  a  resultant  force 
equal  to  the  weight  of  the  water  it  displaces. 
This  law  can  be  proved  theoretically  from  the 
mathematical  principles  of  hydrostatics  and 
can  also  be  verified  experimentally.  Hence, 
if  W  lb.  be  the  weight  of  the  crown,  as  weighed 
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in  air,  and  rv  lb.  be  the  weight  of  the  "water 
which  it  displaces  when  completely  immersed, 
W—w  would  be  the  extra  upward  force 
necessary  to  sustain  the  crown  as  it  hung  in 
water. 

Now,  this  upward  force  can  easily  be  ascer- 
tained by  weighing  the  body  as  it  hangs  in 

water,  as  shown  in  the  annexed  figure.     If 

■■•Weight's 

Fig.  3. 

the  weights  in  the  right-hand  scale  come  to 
F  lb.,  then  the  apparent  weight  of  the  crown 
in  water  is  F  lb.  ;   and  we  thus  have 

F=^W-w 

and  thus  w  —  W—F, 

A  WW and  —  =  jv — E.  M) w      W—F  ^    ' 

where  W  and  F  are  determined  by  the  easy, 
and    fairly    precise,    operation    of    weighing. 
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W 
Hence,  by  equation  (A),  —  is  known.     But 
W  . 
—  is  the  ratio  of  the  weight  of  the  crown  to 

the  weight  of  an  equal  volume  of  water. 
This  ratio  is  the  same  for  any  lump  of  metal  of 
the  same  material :  it  is  now  called  the  specific 
gravity  of  the  material,  and  depends  only  on 
the  intrinsic  nature  of  the  substance  and  not 
on  its  shape  or  quantity.  Thus  to  test  if  the 
crown  were  of  gold,  Archimedes  had  only  to 
take  a  lump  of  indisputably  pure  gold  and 
find  its  specific  gravity  by  the  same  process. 
If  the  two  specific  gravities  agreed,  the  crown 
was  pure  ;   if  they  disagreed,  it  was  debased. 

This  argument  has  been  given  at  length, 
because  not  only  is  it  the  first  precise  example 
of  the  application  of  mathematical  ideas  to 
physics,  but  also  because  it  is  a  perfect  and 
simple  example  of  what  must  be  the  method 
and  spirit  of  the  science  for  all  time.  The 
discovery  of  the  theory  of  specific  gravity 
marks  a  genius  of  the  first  rank. 

The  death  of  Archimedes  by  the  hands  of  a 
Roman  soldier  is  symbolical  of  a  world-change 
of  the  first  magnitude  :  the  theoretical  Greeks, 
with  their  love  of  abstract  science,  were  super- 

seded in  the  leadership  of  the  European  world 
by  the  practical  Romans.  Lord  Beacons- 
field,  in  one  of  his  novels,  has  defined  a  practi- 

cal man  as  a  man  who  practises  the  errors  of 
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his  forefathers.  The  Romans  were  a  great 
race,  but  they  were  cursed  with  the  sterihty 
which  waits  upon  practicahty.  They  did  not 
improve  upon  the  knowledge  of  their  fore- 

fathers, and  all  their  advances  were  confined 
to  the  minor  technical  details  of  engineering. 
They  were  not  dreamers  enough  to  arrive  at 
new  points  of  view,  which  could  give  a  more 
fundamental  control  over  the  forces  of  nature. 
No  Roman  lost  his  life  because  he  was  ab- 

sorbed in  the  contemplation  of  a  mathe- 
matical diagram. 



CHAPTER   IV 

DYNAMICS 

The  world  had  to  wait  for  eighteen  hundred 
years  till  the  Greek  mathematical  physicists 
found  successors.  In  the  sixteenth  and  seven- 

teenth centuries  of  our  era  great  Italians,  in 
particular  Leonardo  da  Vinci,  the  artist 
(born  1452,  died  1519),  and  Galileo  (born  1564, 
died  1642),  rediscovered  the  secret,  knovra  to 
Archimedes,  of  relating  abstract  mathematical 
ideas  with  the  experimental  investigation  of 
natural  phenomena.  Meanwhile  the  slow 
advance  of  mathematics  and  the  accumula- 

tion of  accurate  astronomical  knowledge  had 
placed  natural  philosophers  in  a  much  more 
advantageous  position  for  research.  Also  the 
very  egoistic  self-assertion  of  that  age,  its 
greediness  for  personal  experience,  led  its 
thinkers  to  want  to  see  for  themselves  what 
happened ;  and  the  secret  of  the  relation  of 
mathematical  theory  and  experiment  in  in- 

ductive reasoning  was  practically  discovered. 
It  was  an  act  eminently  characteristic  of  the 
age  that  Galileo,  a  philosopher,  should  have 

42 
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dropped  the  weights  from  the  leaning  tower 
of  Pisa.  There  are  always  men  of  thought 
and  men  of  action  ;  mathematical  physics  is 
the  product  of  an  age  which  combined  in  the 
same  men  impulses  to  thought  with  impulses 
to  action. 

This  matter  of  the  dropping  of  weights  from 
the  tower  marks  picturesquely  an  essential 
step  in  knowledge,  no  less  a  step  than  the 
first  attainment  of  correct  ideas  on  the  science 

of  dynamics,  the  basal  science  of  the  whole 
subject.  The  particular  point  in  dispute  was 
as  to  whether  bodies  of  different  weights 
would  fall  from  the  same  height  in  the  same 
time.  According  to  a  dictum  of  Aristotle, 
universally  followed  up  to  that  epoch,  the 

heavier  weight  would  fall  the  quicker.  Gali- 
leo affirmed  that  they  would  fall  in  the  same 

time,  and  proved  his  point  by  dropping 
weights  from  the  top  of  the  leaning  tower. 
The  apparent  exceptions  to  the  rule  all  arise 

when,  for  some  reason,  such  as  extreme  light- 
ness or  great  speed,  the  air  resistance  is  im- 

portant. But  neglecting  the  air  the  law  is 
exact. 

Galileo's  successful  experiment  was  not  the 
result  of  a  mere  lucky  guess.  It  arose  from 
his  correct  ideas  in  connection  with  inertia 

and  mass.  The  first  law  of  motion,  as  follow- 
ing Newton  we  now  enunciate  it,  is — Every 

body  continues  in  its  state  of  rest  or  of  uni- 
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form  motion  in  a  straight  line,  except  so  far 
as  it  is  compelled  by  impressed  force  to 
change  that  state.  This  law  is  more  than  a 
dry  formula  :  it  is  also  a  paean  of  triumph 
over  defeated  heretics.  The  point  at  issue 
can  be  understood  by  deleting  from  the  law 

the  phrase  "  or  of  uniform  motion  in  a  straight 
line."  We  there  obtain  what  might  be  taken 
as  the  Aristotelian  opposition  formula : 

"  Every  body  continues  in  its  state  of  rest 
except  so  far  as  it  is  compelled  by  impressed 

force  to  change  that  state." In  this  last  false  formula  it  is  asserted  that, 
apart  from  force,  a  body  continues  in  a  state 
of  rest ;  and  accordingly  that,  if  a  body  is 
moving,  a  force  is  required  to  sustain  the 
motion ;  so  that  when  the  force  ceases,  the 
motion  ceases.  The  true  Newtonian  law 
takes  diametrically  the  opposite  point  of  view. 
The  state  of  a  body  unacted  on  by  force  is 
that  of  uniform  motion  in  a  straight  line,  and 
no  external  force  or  influence  is  to  be  looked 
for  as  the  cause,  or,  if  you  like  to  put  it  so,  as 
the  invariable  accompaniment  of  this  uniform 
rectilinear  motion.  Rest  is  merely  a  par- 

ticular case  of  such  motion,  merely  when  the 
velocity  is  and  remains  zero.  Thus,  when  a 
body  is  moving,  we  do  not  seek  for  any  ex- 

ternal influence  except  to  explain  changes  in 
the  rate  of  the  velocity  or  changes  in  its  direc- 

tion.    So  long  as  the  body  is  moving  at  the 
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same  rate  and  in  the  same  direction  there  is 
no  need  to  invoke  the  aid  of  any  forces. 

The  difference  between  the  two  points  of 

view  is  well  seen  by  reference  to  the  theory'  of 
the  motion  of  the  planets.  Copernicus,  a 
Pole,  born  at  Thorn  in  West  Prussia  (born 
1473,  died  1543),  showed  how  much  simpler 
it  was  to  conceive  the  planets,  including  the 

Force  (on False  hypofhesis) 

Fig.  4. 

earth  as  revolving  round  the  sun  in  orbits 
which  are  nearly  circular  ;  and  later,  Kepler, 
a  German  mathematician,  in  the  year  1609 
proved  that,  in  fact,  the  orbits  are  practically 
ellipses,  that  is,  a  special  sort  of  oval  curves 
which  we  will  consider  later  in  more  detail. 
Immediately  the  question  arose  as  to  what 
are  the  forces  which  preserve  the  planets  in 
this  motion.     According  to  the  old  false  view. 
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held  by  Kepler,  the  actual  velocity  itself  re- 
quired preservation  by  force.  Thus  he  looked 

for  tangential  forces  as  in  the  accompanying 
figure  (4).  But  according  to  the  Newtonian 
law,  apart  from  some  force  the  planet  would 
move  for  ever  with  its  existing  velocity  in  a 
straight  line,  and  thus  depart  entirely  from 
the  sun.  Newton,  therefore,  had  to  search 
for  a  force  which  would  bend  the  motion 

Planer 

Fig.  5. 

round  into  its  elliptical  orbit.  This  he  showed 
must  be  a  force  directed  towards  the  sun  as  in 
the  next  figure  (5).  In  fact,  the  force  is  the 
gravitational  attraction  of  the  sun  acting 
according  to  the  law  of  the  inverse  square  of 
the  distance,  which  has  been  stated  above. 

The  science  of  mechanics  rose  among  the 
Greeks  from  a  consideration  of  the  theory  of 
the  mechanical  advantage  obtained  by  the  use 
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of  a  lever,  and  also  from  a  consideration  of 
various  problems  connected  with  the  weights 
of  bodies.     It  was  finally  put  on  its  true  basis 
at  the  end  of  the  sixteenth  and  during  the 
seventeenth  centuries,  as  the  preceding  ac- 

count shows,  partly  with  the  view  of  explain- 
ing the  theory  of  falling  bodies,  but  chiefly 

in  order  to  give  a  scientific  theory  of  planetary 
motions.     But  since  those  days  dynamics  has 
taken  upon  itself  a  more  ambitious  task,  and 
now  claims  to  be  the  ultimate  science  of  which 
the    others    are    but    branches.     The    claim 
amounts  to  this :    namely,  that  the  various 
qualities  of  things  perceptible  to  the  senses 
are  merely  our  peculiar  mode  of  appreciating 
changes  in  position   on  the   part   of   things 
existing  in  space.     For  example,  suppose  we 
look   at   Westminster   Abbey.     It   has   been 
standing  there,  grey  and  immovable,  for  cen- 

turies past.     But,  according  to  modern  scien- 
tific theory,  that  greyness,  which  so  heightens 

our  sense  of  the  immobility  of  the  building,  is 
itself  nothing  but  our  way  of  appreciating  the 
rapid  motions  of  the  ultimate  molecules,  which 
form  the  outer  surface  of  the  building  and 
communicate  vibrations  to  a  substance  called 
the  ether.     Again  we  lay  our  hands  on  its 
stones  and  note  their  cool,  even  temperature, 
so  symbolic  of  the  quiet  repose  of  the  building. 
But  this  feeling  of  temperature  simply  marks 
our  sense  of  the  transfer  of  heat  from  the 
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hand  to  the  stone,  or  from  the  stone  to  the 
hand ;  and,  according  to  modern  science, 
heat  is  nothing  but  the  agitation  of  the  mole- 

cules of  a  body.  Finally,  the  organ  begins 
playing,  and  again  sound  is  nothing  but  the 
result  of  motions  of  the  air  striking  on  the 
drum  of  the  ear. 

Thus  the  endeavour  to  give  a  dynamical 
explanation  of  phenomena  is  the  attempt  to 
explain  them  by  statements  of  the  general 
form,  that  such  and  such  a  substance  or  body 
was  in  this  place  and  is  now  in  that  place. 
Thus  we  arrive  at  the  great  basal  idea  of 
modern  science,  that  all  our  sensations  are 
the  result  of  comparisons  of  the  changed 
configurations  of  things  in  space  at  various 
times.  It  follows  therefore,  that  the  laws 
of  motion,  that  is,  the  laws  of  the  changes 
of  configurations  of  things,  are  the  ultimate 
laws  of  physical  science. 

In  the  application  of  mathematics  to  the 
investigation  of  natural  philosophy,  science 
does  systematically  what  ordinary  thought 
does  casually.  When  we  talk  of  a  chair,  we 
usually  mean  something  which  we  have  been 
seeing  or  feeling  in  some  way ;  though  most 
of  our  language  will  presuppose  that  there 
is  something  which  exists  independently  of 
our  sight  or  feeling.  Now  in  mathematical 
physics  the  opposite  course  is  taken.  The 
chair  is  conceived  without  any  reference  to 
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anyone  in  particular,  or  to  any  special  modes 
oi  perception.  The  result  is  that  the  chair 
becomes  in  thought  a  set  of  molecules  in  space, 
or  a  group  of  electrons,  a  portion  of  the  ether 
in  motion,  or  however  the  current  scientific 
ideas  describe  it.  But  the  point  is  that 
science  reduces  the  chair  to  things  moving  in 

space  and  influencing  each  other's  motions. Then  the  various  elements  or  factors  which 
enter  into  a  set  of  circumstances,  as  thus 
conceived,  are  merely  the  things,  like  lengths 
of  lines,  sizes  of  angles,  areas,  and  volumes,  by 
which  the  positions  of  bodies  in  space  can  be 
settled.  Of  course,  in  addition  to  these  geo- 

metrical elements  the  fact  of  motion  and 
change  necessitates  the  introduction  of  the 
rates  of  changes  of  such  elements,  that  is  to 
say,  velocities,  angular  velocities,  accelera- 

tions, and  suchlike  things.  Accordingly,  mathe- 
matical physics  deals  with  correlations  be- 

tween variable  numbers  which  are  supposed 
to  represent  the  correlations  which  exist  in 
nature  between  the  measures  of  these  geo- 

metrical elements  and  of  their  rates  of  change. 
But  always  the  mathematical  laws  deal  with 
variables,  and  it  is  only  in  the  occasional 
testing  of  the  laws  by  reference  to  experi- 

ments, or  in  the  use  of  the  laws  for  special 
predictions  that  definite  numbers  are  substi- 
tuted. 

The  interesting  point  about  the  world  as 
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thus  conceived  in  this  abstract  way  through- 
out the  study  of  mathematical  physics,  where 

only  the  positions  and  shapes  of  things  are 
considered  together  with  their  changes,  is  that 
the  events  of  such  an  abstract  world  are  suffi- 

cient to  "explain"  our  sensations.  When  we 
hear  a  sound,  the  molecules  of  the  air  have 
been  agitated  in  a  certain  way :  given  the 
agitation,  or  air-waves  as  they  are  called,  all 
normal  people  hear  sound ;  and  if  there  are 
no  air-waves,  there  is  no  sound.  And,  simi- 

larly, a  physical  cause  or  origin,  or  parallel 
event  (according  as  different  people  might  like 
to  phrase  it)  underlies  our  other  sensations. 
Our  very  thoughts  appear  to  correspond  to 
conformations  and  motions  of  the  brain  ;  in- 

jure the  brain  and  you  injure  the  thoughts. 
Meanwhile  the  events  of  this  physical  universe 

succeed  each  other  according  to  the  mathe- 
matical laws  which  ignore  all  special  sensa- 

tions and  thoughts  and  emotions. 
Now,  undoubtedly,  this  is  the  general  aspect 

of  the  relation  of  the  world  of  mathematical 

physics  to  our  emotions,  sensations,  and 
thoughts;  and  a  great  deal  of  controversy 
has  been  occasioned  by  it  and  much  ink 

spilled.  We  need  only  make  one  remark.  The 
whole  situation  has  arisen,  as  we  have  seen, 
from  the  endeavour  to  describe  an  external 

world  "explanatory"  of  our  various  in- 
dividual sensations  and  emotions,  but  a  world 
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also,  not  essentially  dependent  upon  any 
particular  sensations  or  upon  any  particular 
individual.  Is  such  a  world  merely  but 
one  huge  fairy  tale  ?  But  fairy  tales  are 
fantastic  and  arbitrary :  if  in  truth  there 
be  such  a  world,  it  ought  to  submit  itself 
to  an  exact  description,  which  determines 
accurately  its  various  parts  and  their  mutual 
relations.  Now,  to  a  large  degree,  this 
scientific  world  does  submit  itself  to  this 

test  and  allow  its  events  to  be  explored 
and  predicted  by  the  apparatus  of  abstract 
mathematical  ideas.  It  certainly  seems  that 
here  we  have  an  inductive  verification  of 

our  initial  assumption.  It  must  be  admitted 
that  no  inductive  proof  is  conclusive ;  but 
if  the  whole  idea  of  a  world  which  has 

existence  independently  of  our  particular  per- 
ceptions of  it  be  erroneous,  it  requires  careful 

explanation  why  the  attempt  to  characterise 
it,  in  terms  of  that  mathematical  remnant 

of  our  ideas  which  would  apply  to  it,  should 
issue  in  such  a  remarkable  success. 

It  would  take  us  too  far  afield  to  enter  into 

a  detailed  explanation  of  the  other  laws  of 
motion.  The  remainder  of  this  chapter  must 
be  devoted  to  the  explanation  of  remarkable 
ideas  which  are  fundamental,  both  to  mathe- 

matical physics  and  to  pure  mathematics  : 
these  are  the  ideas  of  vector  quantities  and 
the  parallelogram  law  for  vector  addition.    We 
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have  seen  that  the  essence  of  motion  is  that 
a  body  was  at  A  and  is  now  at  C.  This  trans- 

ference from  ̂   to  C  requires  two  distinct 
elements  to  be  settled  before  it  is  completely 
determined,  namely  its  magnitude  {i.e.  the 
length  AC)  and  its  direction.  Now  any- 

thing, like  this  transference,  which  is  com- 
pletely given  by  the  determination  of  a  magni- 

tude and  a  direction  is  called  a  vector.  For 
example,  a  velocity  requires  for  its  definition 
the  assignment  of  a  magnitude  and  of  a 
direction.  It  must  be  of  so  many  miles  per 
hour  in  such  and  such  a  direction.  The  ex- 

istence and  the  independence  of  these  two 
elements  in  the  determination  of  a  velocity 
are  well  illustrated  by  the  action  of  the  captain 
of  a  ship,  who  communicates  with  different  sub- 

ordinates respecting  them  :  he  tells  the  chief 
engineer  the  number  of  knots  at  which  he  is 
to   steam,   and  the   helmsman   the  compass 
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l)earing  of  the  course  which  he  is  to  keep. 
Again  the  rate  of  change  of  velocity,  that  is 
velocity  added  per  unit  time,  is  also  a  vector 
quantity  :  it  is  called  the  acceleration.  Simi- 

larly a  force  in  the  dynamical  sense  is  another 
vector  quantity.  Indeed,  the  vector  nature 
of  forces  follows  at  once  according  to  djiiami- 
cal  principles  from  that  of  velocities  and 
accelerations ;  but  this  is  a  point  which  we 
need  not  go  into.  It  is  sufficient  here  to  say 
that  a  force  acts  on  a  body  with  a  certain 
magnitude  in  a  certain  direction. 
Now  all  vectors  can  be  graphically  repre- 

sented by  straight  lines.  All  that  has  to  be 
done  is  to  arrange :  (i)  a  scale  according  to 
which  units  of  length  correspond  to  units  of 
magnitude  of  the  vector — for  example,  one 
inch  to  a  velocity  of  10  miles  per  hour  in  the 
case  of  velocities,  and  one  inch  to  a  force  of 

10  tons  weight  in  the  case  of  forces — and  (ii) 
a  direction  of  the  line  on  the  diagram  corre- 

sponding to  the  direction  of  the  vector.  Then 
a  line  drawn  with  the  proper  number  of  inches 
of  length  in  the  proper  direction  represents  the 
required  vector  on  the  arbitrarily  assigned  scale 
of  magnitude.  This  diagrammatic  representa- 

tion of  vectors  is  of  the  first  importance.  By 

its  aid  we  can  enunciate  the  famous  "  parallelo- 
gram law  "  for  the  addition  of  vectors  of  the same  kind  but  in  different  directions. 

Consider  the  vector  ̂ C  in  figure  6  as  repre- 
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sentative  of  the  changed  position  of  a  body 
from  ̂   to  C :  we  will  call  this  the  vector  of 
transportation.  It  will  be  noted  that,  if  the 
reduction  of  physical  phenomena  to  mere 
changes  in  positions,  as  explained  above,  is 
correct,  all  other  types  of  physical  vectors  are 
really  reducible  in  some  way  or  other  to  this 
single  type.  Now  the  final  transportation 
from  ̂   to  C  is  equally  well  effected  by  a 
transportation  from  A  to  B  and  a  transporta- 

tion from  B  to  C,  or,  completing  the  parallelo- 
gram ABCD,  by  a  transportation  from  A  to 

D  and  a  transportation  from  D  to  C.  These 
transportations  as  thus  successively  applied 
are  said  to  be  added  together.  This  is  simply 
a  definition  of  what  we  mean  by  the  addition 
of  transportations.  Note  further  that,  con- 

sidering parallel  lines  as  being  lines  drawn  in 
the  same  direction,  the  transportations  B  to 
C  and  A  to  D  may  be  conceived  as  the  same 
transportation  applied  to  bodies  in  the  two 
initial  positions  B  and  A.  With  this  con- 

ception we  may  talk  of  the  transportation 
^  to  D  as  applied  to  a  body  in  any  position 
for  example  at  B.  Thus  we  may  say  that 
the  transportation  A  to  C  can  be  conceived 
as  the  sum  of  the  two  transportations  A  to 
B  and  A  to  D  applied  in  any  order.  Here 
we  have  the  parallelogram  law  for  the  ad- 

dition of  transportations :  namely,  if  the 
transportations  are   A   to  B  and  A   to   D, 
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complete  the  parallelogram  ABCD,  and  then 
the  sum  of  the  two  is  the  diagonal  AC. 

All  this  at  first  sight  may  seem  to  be 
very  artificial.  But  it  must  be  observed 
that  nature  itself  presents  us  with  the  idea. 
For  example,  a  steamer  is  moving  in  the 
direction  AD  (cf.  fig.  6)  and  a  man  walks 
across  its  deck.  If  the  steamer  were  still, 
in  one  minute  he  would  arrive  at  B ;  but 
during  that  minute  his  starting  point  A  on 
the  deck  has  moved  to  D,  and  his  path  on 
the  deck  has  moved  from  AB  to  DC.  So 
that,  in  fact,  his  transportation  has  been  from 
^  to  C  over  the  surface  of  the  sea.  It  is, 
however,  presented  to  us  analysed  into  the 
sum  of  two  transportations,  namely,  one  from 
A  to  B  relatively  to  the  steamer,  and  one 
from  A  to  D  which  is  the  transportation  of 
the  steamer. 

By  taking  into  account  the  element  of  time, 

namely  one  minute,  this  diagram  of  the  man's 
transportation  AC  represents  his  velocity. 
For  if  AC  represented  so  many  feet  of  trans- 

portation, it  now  represents  a  transportation 
of  so  many  feet  per  minute,  that  is  to  say,  it 
represents  the  velocity  of  the  man.  Then 
AB  and  AD  represent  two  velocities,  namely, 
his  velocity  relatively  to  the  steamer,  and  the 

velocity  of  the  steamer,  whose  "sum"  makes 
up  his  complete  velocity.  It  is  evident  that 
diagrams   and   definitions   concerning   trans- 
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portations  are  turned  into  diagrams  and  de- 
finitions concerning  velocities  by  conceiving 

the  diagrams  as  representing  transportations 
per  unit  time.  Again,  diagrams  and  defini- 

tions concerning  velocities  are  turned  into 
diagrams  and  definitions  concerning  accelera- 

Fig.  7. 

tions  by  conceiving  the  diagrams  as  repre- 
senting velocities  added  per  unit  time. 

Thus  by  the  addition  of  vector  velocities 
and  of  vector  accelerations,  we  mean  the 
addition  according  to  the  parallelogram  law. 

Also,  according  to  the  laws  of  motion  a 
force  is  fully  represented  by  the  vector 
acceleration  it  produces  in  a  body  of  given 
mass.  Accordingly,  forces  will  be  said  to  be 
added  when  their  joint  effect  is  to  be  reckoned 
according  to  the  parallelogram  law. 

Hence    for    the    fundamental    vectors    of 
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science,  namely  transportations,  velocities, 
and  forces,  the  addition  of  any  two  of  the  same 

kind  is  the  production  of  a  "  resultant " 
vector  according  to  the  rule  of  the  parallelo- 

gram law. 
By  far  the  simplest  type  of  parallelogram 

is  a  rectangle,  and  in  pure  mathematics  it  is 
the  relation  of  the  single  vector  ̂ C  to  the 
two  component  vectors,  AB  and  AD,  at  right 
angles  (cf.  fig.  7),  which  is  continually  re- 

curring. Let  Xf  y,  and  r  units  represent  the 
lengths  of  AB,  AD,  and  AC,  and  let  m  units 
of  angle  represent  the  magnitude  of  the  angle 
BAC.  Then  the  relations  between  x,  y,  r, 
and  m,  in  all  their  many  aspects  are  the  con- 

tinually recurring  topic  of  pure  mathematics  ; 
and  the  results  are  of  the  type  required  for 
application  to  the  fundamental  vectors  of 
mathematical  physics.  This  diagram  is  the 
chief  bridge  over  which  the  results  of  pure 
mathematics  pass  in  order  to  obtain  applica- 

tion to  the  facts  of  nature. 



CHAPTER    V 

THE   SYMBOLISM   OF  MATHEMATICS 

We  now  return  to  pure  mathematics,  and 
consider  more  closely  the  apparatus  of  ideas 
out  of  which  the  science  is  built.  Our  first 
concern  is  with  the  symbolism  of  the  science, 
and  we  start  with  the  simplest  and  universally 
known  symbols,  namely  those  of  arithmetic. 

Let  us  assume  for  the  present  that  we  have 
sufficiently  clear  ideas  about  the  integral 
numbers,  represented  in  the  Arabic  notation 
by  0,1,2,  .  .  .,  9,  10,  11,  .  .  .  100,  101,  ...  and 
so  on.  This  notation  was  introduced  into 

Europe  through  the  Arabs,  but  they  appar- 
ently obtained  it  from  Hindoo  sources.  The 

first  known  work  *  in  which  it  is  systematic- 
ally explained  is  a  work  by  an  Indian  mathe- 

matician, Bhaskara  (born  1114  a.d.).  But 
the  actual  numerals  can  be  traced  back  to  the 
seventh  century  of  our  era,  and  perhaps  were 
originally  invented  in  Tibet.     For  our  present 

*  For  the  detailed  historical  facts  relating  to  pure 
mathematics,  I  am  chiefly  indebted  to  A  Short  History 
o/   Mathematics,  by  W.  W.  R.  Ball. 

68 
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purposes,  however,  the  history  of  the  notation 
is  a  detail.  The  interesting  point  to  notice 
is  the  admirable  illustration  which  this 

numeral  system  affords  of  the  enormous  im- 
portance of  a  good  notation.  By  relieving 

the  brain  of  all  unnecessary  work,  a  good 
notation  sets  it  free  to  concentrate  on  more 

advanced  problems,  and  in  effect  increases 
the  mental  power  of  the  race.  Before  the 

introduction  of  the  Arabic  notation,  multipli- 
cation was  difficult,  and  the  division  even  of 

integers  called  into  play  the  highest  mathe- 
matical faculties.  Probably  nothing  in  the 

modern  world  would  have  more  astonished  a 
Greek  mathematician  than  to  learn  that,  under 
the  influence  of  compulsory  education,  the 
whole  population  of  Western  Europe,  from 
the  highest  to  the  lowest,  could  perform  the 
operation  of  division  for  the  largest  numbers. 
This  fact  would  have  seemed  to  him  a  sheer 

impossibility.  The  consequential  extension 
of  the  notation  to  decimal  fractions  was  not 

accomplished  till  the  seventeenth  centur^\ 
Our  modern  power  of  easy  reckoning  with 
decimal  fractions  is  the  almost  miraculous 

result  of  the  gradual  discovery  of  a  perfect 
notation. 

Mathematics  is  often  considered  a  diffi- 
cult and  mysterious  science,  because  of  the 

numerous  symbols  which  it  employs.  Of 
course,  nothing  is  more  incomprehensible  than 
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a  symbolism  which  we  do  not  understand. 
Also  a  symbolism,  which  we  only  partially 
understand  and  are  unaccustomed  to  use,  is 
difficult  to  follow.  In  exactly  the  same  way 
the  technical  terms  of  any  profession  or  trade 
are  incomprehensible  to  those  who  have  never 
been  trained  to  use  them.  But  this  is  not 
because  they  are  difficult  in  themselves.  On 
the  contrary  they  have  invariably  been  intro- 

duced to  make  things  easy.  So  in  mathe- 
matics, granted  that  we  are  giving  any  serious 

attention  to  mathematical  ideas,  the  sym- 
bolism is  invariably  an  immense  simplifica- 

tion. It  is  not  only  of  practical  use,  but  is 
of  great  interest.  For  it  represents  an  analy- 

sis of  the  ideas  of  the  subject  and  an  almost 
pictorial  representation  of  their  relations  to 
each  other.  If  anyone  doubts  the  utility  of 
symbols,  let  him  write  out  in  full,  without  any 
symbol  whatever,  the  whole  meaning  of  the 
following  equations  which  represent  some  of 
the  fundamental  laws  of  algebra : — 

ai+y=y+x   (1) 
{x+y)-\-z=x-r{y-}-z)  ..         ..(2) 
X  X  y=y  XX..  . .  •  •   (3) 
(x  X  y)  X  z=x  X  (y  X  z)        . .   (4) 
X  X  {y+x)={x  X  y)-}-{x  x  z)    (5) 

Here  (1)  and  (2)  are  called  the  commutative 
and  associative  laws  for  addition,  (3)  and  (4) 
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re  the  commutative  and  associative  laws  for 

iiiulti plication,  and  (5)  is  the  distributive  law 

relating  addition  and  multiplication.  For  ex- 
ample, without  symbols,  (1)  becomes  :  If  a 

second  number  be  added  to  any  given  number 
the  result  is  the  same  as  if  the  first  given 
number  had  been  added  to  the  second  number. 

This  example  shows  that,  by  the  aid  of  s\Tn- 
bolism,  we  can  make  transitions  in  reasoning 
almost  mechanically  by  the  eye,  which  other- 

wise would  call  into  play  the  higher  faculties 
of  the  brain. 

It  is  a  profoundly  erroneous  truism,  repeated 

by  all  copy-books  and  by  eminent  people  when 
they  are  making  speeches,  that  we  should 
cultivate  the  habit  of  thinking  of  what  we  are 
doing.  The  precise  opposite  is  the  case. 
Civilization  advances  by  extending  the  num- 

ber of  important  operations  which  we  can 
perform  \vithout  thinking  about  them.  Opera- 

tions of  thought  are  like  cavalr\'  charges  in 
a  battle — they  are  strictly  limited  in  num- 

ber, they  require  fresh  horses,  and  must  only 
be  made  at  decisive  moments. 

One  very  important  property  for  sjinbolism 
to  possess  is  that  it  should  be  concise,  so  as  to 
be  visible  at  one  glance  of  the  eye  and  to  be 
rapidly  written.  Now  we  cannot  place  sym- 

bols more  concisely  together  than  by  placing 
them  in  immediate  juxtaposition.  In  a  good 
symbolism  therefore,  the  juxtaposition  of  ira- 
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portant  symbols  should  have  an  important 
meaning.  This  is  one  of  the  merits  of  the 
Arabic  notation  for  numbers  ;  by  means  of 
ten  symbols,  0,  1,  2,  3,  4,  5,  6,  7,  8,  9,  and  by 
simple  juxtaposition  it  symbolizes  any  number 
whatever.  Again  in  algebra,  when  we  have 
two  variable  numbers  x  and  y,  we  have  to 
make  a  choice  as  to  what  shall  be  denoted  by 
their  juxtaposition  ccy.  Now  the  two  most 
important  ideas  on  hand  are  those  of  addition 
and  multiplication.  Mathematicians  have 
chosen  to  make  their  symbolism  more  concise 
by  defining  ccy  to  stand  for  x  x  y.  Thus  the 
laws  (3),  (4),  and  (5)  above  are  in  general 
written, 

xy=yx,    {xy)z=x{yz),    x{y-\-z)=xyi-xz, 
thus   securing   a   great   gain   in   conciseness. 
The  same  rule  of  symbolism  is  applied  to  the 
juxtaposition  of  a  definite  number  and  a  vari- 

able :  we  write  3x  for  3  x  x,  and  30a;  for  30  x  x. 
It  is  evident  that  in  substituting  definite 

numbers  for  the  variables  some  care  must  be 
taken  to  restore  the  x,  so  as  not  to  conflict 
with  the  Arabic  notation.  Thus  when  we 
substitute  2  for  x  and  3  for  y  in  xy,  we  must 
write  2x3  for  xy,  and  not  23  which  means 
20+3. 

It  is  interesting  to  note  how  important  for 
the  development  of  science  a  modest-looking 
symbol  may  be.  It  may  stand  for  the  em- 

phatic presentation  of  an  idea,  often  a  very 
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subtle  idea,  and  by  its  existence  make  it  easy 
to  exhibit  the  relation  of  this  idea  to  all  the 

complex  trains  of  ideas  in  which  it  occurs. 
For  example,  take  the  most  modest  of  all 

symbols,  namely,  0,  which  stands  for  the  num- 
ber zero.  The  Roman  notation  for  numbers 

had  no  symbol  for  zero,  and  probably  most 
mathematicians  of  the  ancient  world  would 

have  been  horribly  puzzled  by  the  idea  of  the 
number  zero.  For,  after  all,  it  is  a  very 
subtle  idea,  not  at  all  obvious.  A  great  deal 
of  discussion  on  the  meaning  of  the  zero  of 
quantity  will  be  found  in  philosophic  works. 
Zero  is  not,  in  real  truth,  more  difficult  or 
subtle  in  idea  than  the  other  cardinal  numbers. 

What  do  we  mean  by  1  or  by  2,  or  by  3  ? 
But  we  are  familiar  with  the  use  of  these  ideas, 
though  we  should  most  of  us  be  puzzled  to 
give  a  clear  analysis  of  the  simpler  ideas 
which  go  to  form  them.  The  point  about  zero 

is  that  we  do  not  need  to  use  it  in  the  opera- 
tions of  daily  life.  No  one  goes  out  to  buy 

zero  fish.  It  is  in  a  way  the  most  civilized 
of  all  the  cardinals,  and  its  use  is  only  forced 
on  us  by  the  needs  of  cultivated  modes  of 

thought.  Many  important  services  are  ren- 
dered by  the  symbol  0,  which  stands  for  the 

number  zero. 

The  symbol  developed  in  connection  with 
the  Arabic  notation  for  numbers  of  which  it 

is  an  essential  part.     For  in  that  notation  the 
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value  of  a  digit  depends  on  the  position  in 
which  it  occurs.  Consider,  for  example,  the 
digit  5,  as  occurring  in  the  numbers  25,  51, 
3512,  5213.  In  the  first  number  5  stands  for 

five,  in  the  second  number  5  stands  for  fifty, 
in  the  third  number  for  five  hundred,  and  in 
the  fourth  number  for  five  thousand.  Now, 
when  we  write  the  number  fifty-one  in  the 
symbolic  form  51,  the  digit  1  pushes  the  digit 
5  along  to  the  second  place  (reckoning  from 
right  to  left)  and  thus  gives  it  the  value  fifty. 
But  when  we  want  to  symbolize  fifty  by  itself, 
we  can  have  no  digit  1  to  perform  this  service  ; 
we  want  a  digit  in  the  units  place  to  add 
nothing  to  the  total  and  yet  to  push  the  5 
along  to  the  second  place.  This  service  is 
performed  by  0,  the  symbol  for  zero.  It  is 
extremely  probable  that  the  men  who  intro- 

duced 0  for  this  purpose  had  no  definite  con- 
ception in  their  minds  of  the  number  zero. 

They  simply  wanted  a  mark  to  symbolize  the 
fact  that  nothing  was  contributed  by  the 

digit's  place  in  which  it  occurs.  The  idea  of 
zero  probably  took  shape  gradually  from  a 
desire  to  assimilate  the  meaning  of  this  mark 
to  that  of  the  marks,  1,  2,  ...  9,  which  do  re- 

present cardinal  numbers.  This  would  not 
represent  the  only  case  in  which  a  subtle  idea 
has  been  introduced  into  mathematics  by  a 
symbolism  which  in  its  origin  was  dictated  by 
practical  convenience. 
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Thus  the  first  use  of  0  was  to  make  the 

arable  notation  possible — no  slight  service. 
We  can  imagine  that  when  it  had  been  intro- 

duced for  this  purpose,  practical  men,  of  the 
sort  who  dislike  fanciful  ideas,  deprecated  the 
silly  habit  of  identifying  it  with  a  number 
zero.  But  they  were  wTong,  as  such  men 
always  are  when  they  desert  their  proper 
function  of  masticating  food  which  others  have 
prepared.  For  the  next  service  performed  by 
the  sjTnbol  0  essentially  depends  upon  assign- 

ing to  it  the  function  of  representing  the 
number  zero. 

This  second  symbolic  use  is  at  first  sight 
so  absurdly  simple  that  it  is  difiicult  to  make 
a  beginner  realize  its  importance.  Let  us 
start  with  a  simple  example.  In  Chapter  II. 
we  mentioned  the  correlation  between  two 
variable  numbers  x  and  y  represented  by  the 
equation  a; -f?/=  1.  This  can  be  represented 
in  an  indefinite  number  of  ways ;  for  example, 
x=l—ij,  y=  \—x,2x-\-Sy—l  =  x-{-2y,  and  so 
on.     But  the  important  way  of  stating  it  is 

x-\-y-l  =  0. 

Similarly  the  important  way  of  writing  the 
equation  x=l  is  a;— 1=0,  and  of  representing 
the  equation  ̂ x  —  2=2x-  is  2tr-— 3tC+2=0. 
The  point  is  that  all  the  symbols  which  repre- 

sent variables,  e.g.  x  and  y,  and  the  symbols 
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representing  some  definite  number  other  than 
zero,  such  as  1  or  2  in  the  examples  above, 
are  written  on  the  left-hand  side,  so  that  the 
whole  left-hand  side  is  equated  to  the  number 
zero.  The  first  man  to  do  this  is  said  to 
have  been  Thomas  Harriot,  born  at  Oxford 
in  1560  and  died  in  1621.  But  what  is  the 

importance  of  this  simple  symbolic  pro- 
cedure ?  It  made  possible  the  growth  of  the 

modern  conception  of  algebraic  form. 
This  is  an  idea  to  which  we  shall  have  con- 

tinually to  recur ;  it  is  not  going  too  far  to 
say  that  no  part  of  modern  mathematics  can 
be  properly  understood  without  constant  re- 

currence to  it.  The  conception  of  form  is 
so  general  that  it  is  difficult  to  characterize 
it  in  abstract  terms.  At  this  stage  we  shall 
do  better  merely  to  consider  examples.  Thus 
the  equations  2ir— 3=0,  a;— 1=0,  5x—Q=0, 
are  all  equations  of  the  same  form,  namely, 
equations  involving  one  unknown  cc,  which  is 
not  multiplied  by  itself,  so  that  x^,  a;^,  etc.,  do 
not  appear.  Again  3x^  —  2a? + 1  =  0,  a;2  _  3^  _l_  2 
=0,  a?2— 4=0,  are  all  equations  of  the  same 
form,  namely,  equations  involving  one  unknown 
ic  in  which  xxx,  that  is  x^,  appears.  These 
equations  are  called  quadratic  equations. 
Similarly  cubic  equations,  in  which  x^  appears, 
yield  another  form,  and  so  on.  Among  the 
three  quadratic  equations  given  above  there 
is  a  minor  difference  between  the  last  equa- 
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tion,  a:2— 4=0,  and  the  preceding  two  equa- 
tions, due  to  the  fact  that  x  (as  distinct 

from  a;2)  does  not  appear  in  the  last  and 
does  in  the  other  two.  This  distinction  is 
very  unimportant  in  comparison  with  the 
great  fact  that  they  are  all  three  quadratic 
equations. 

Then  further  there  are  the  forms  of  equation 
stating  correlations  between  two  variables; 
for  example,  x-{-y—l=0,  2x-i-3y—S=0,  and 
so  on.  These  are  examples  of  what  is  called 
the  linear  form  of  equation.  The  reason  for 

this  name  of  "  linear "  is  that  the  graphic 
method  of  representation,  which  is  explained 
at  the  end  of  Chapter  II,  always  represents 
such  equations  by  a  straight  line.  Then  there 
are  other  forms  for  two  variables — for  example, 
the  quadratic  form,  the  cubic  form,  and  so  on. 
But  the  point  which  we  here  insist  upon  is 
that  this  study  of  form  is  facilitated,  and, 
indeed,  made  possible,  by  the  standard  method 
of  writing  equations  with  the  symbol  0  on 
the  right-hand  side. 

There  is  yet  another  function  performed  by 
0  in  relation  to  the  study  of  form.  Whatever 
number  x  may  be,  0  x  x=0,  and  x-{-0=x. 
By  means  of  these  properties  minor  differ- 

ences of  form  can  be  assimilated.  Thus  the 

difference  mentioned  above  between  the  quad- 
ratic equations  a;2— 3a;+2=0,  and  a;^— 4=0, 

can    be    obliterated    by    WTiting   the    latter 
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equation  in  the  form  cc^-\-{0xx)—4i=0.  For, 
by  the  laws  stated  above,  a?2+(0xaj)— 4  = 
x^-\-0—4i=x^—4i.  Hence  the  equation  x^—4! 
=0,  is  merely  representative  of  a  particular 
class  of  quadratic  equations  and  belongs  to 
the  same  general  form  as  does  ir^— 3a7+2=0. 

For  these  three  reasons  the  symbol  0,  re- 
presenting the  number  zero,  is  essential  to 

modern  mathematics.  It  has  rendered  pos- 
sible types  of  investigation  which  would  have 

been  impossible  without  it. 
The  symbolism  of  mathematics  is  in  truth 

the  outcome  of  the  general  ideas  which 
dominate  the  science.  We  have  now  two 

such  general  ideas  before  us,  that  of  the  vari- 
able and  that  of  algebraic  form.  The  junction 

of  these  concepts  has  imposed  on  mathematics 
another  type  of  symbolism  almost  quaint  in 
its  character,  but  none  the  less  effective.  We 
have  seen  that  an  equation  involving  two 
variables,  x  and  y,  represents  a  particular 
correlation  between  the  pair  of  variables. 
TIius  X  -\-y—l  =0  represents  one  definite  corre- 

lation, and  3x-'r2y—5=0  represents  another 
definite  correlation  between  the  variables  x 
and  y ;  and  both  correlations  have  the  form 
of  what  we  have  called  linear  correlations. 
But  now,  how  can  we  represent  any  linear 
correlation  between  the  variable  numbers  x 
and  y  ?  Here  we  want  to  symbolize  any 
linear  correlation ;    just  as  x  symbolizes  any 
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number.  This  is  done  by  turning  the  numbers 
which  occur  in  the  definite  correlation  3x+2y 
—5=0  into  letters.  We  obtain  ax+by—c=0. 
Here  a,  b,  c,  stand  for  variable  numbers  just 
as  do  X  and  y  :  but  there  is  a  difference  in  the 
use  of  the  two  sets  of  variables.  We  study 
the  general  properties  of  the  relationship  be- 

tween X  and  y  while  a,  b,  and  c  have  un- 
changed values.  We  do  not  determine  what 

the  values  of  a,  b,  and  c  are ;  but  whatever 
they  are,  they  remain  fixed  while  we  study 
the  relation  between  the  variables  x  and  y 
for  the  whole  group  of  possible  values  of  x 
and  y.  But  when  we  have  obtained  the  pro- 

perties of  this  correlation,  we  note  that,  be- 
cause a,  b,  and  c  have  not  in  fact  been  deter- 

mined, we  have  proved  properties  which  must 
belong  to  any  such  relation.  Thus,  by  now 
varying  a,  b,  and  c,  we  arrive  at  the  idea  that 
ax+by—c—O  represents  a  variable  linear 
correlation  between  x  and  y.  In  comparison 
with  X  and  y,  the  three  variables  a,  b,  and  c 
are  called  constants.  Variables  used  in  this 
way  are  sometimes  also  called  parameters. 

Now,  mathematicians  habitually  save  the 
trouble  of  explaining  which  of  their  variables 
are  to  be  treated  as  "  constants,"  and  which 
as  variables,  considered  as  correlated  in  their 
equations,  by  using  letters  at  the  end  of  the 

alphabet  for  the  "  variable  "  variables,  and 
letters  at  the  beginning  of  the  alphabet  for 
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the  "  constant "  variables,  or  parameters. 
The  two  systems  meet  naturally  about  the 
middle  of  the  alphabet.  Sometimes  a  word 
or  two  of  explanation  is  necessary ;  but  as  a 
matter  of  fact  custom  and  common  sense  are 

usually  sufficient,  and  surprisingly  little  con- 
fusion is  caused  by  a  procedure  which  seems 

so  lax. 
The  result  of  this  continual  elimination  of 

definite  numbers  by  successive  layers  of  para- 
meters is  that  the  amount  of  arithmetic  per- 
formed by  mathematicians  is  extremely  small. 

Many  mathematicians  dislike  all  numerical 
computation  and  are  not  particularly  expert 
at  it.  The  territory  of  arithmetic  ends  where 

the  two  ideas  of  "  variables  "  and  of  "  alge- 
braic form  "  commence  their  sway. 



CHAPTER   VI 

GENERALIZATIONS   OF  NUMBER 

One  great  peculiarity  of  mathematics  is  the 
set  of  allied  ideas  which  have  been  invented 
in  connection  with  the  integral  numbers  from 
which  we  started.  These  ideas  may  be  called 
extensions  or  generalizations  of  number.  In 
the  first  place  there  is  the  idea  of  fractions. 
The  earliest  treatise  on  arithmetic  which  we 
possess  was  written  by  an  Egyptian  priest, 
named  Ahmes,  between  1700  B.C.  and  1100 
B.C.,  and  it  is  probably  a  copy  of  a  much  older 
work.  It  deals  largely  with  the  properties  of 
fractions.  It  appears,  therefore,  that  this 
concept  was  developed  very  early  in  the  his- 

tory of  mathematics.  Indeed  the  subject  is 
a  very  obvious  one.  To  divide  a  field  into 
three  equal  parts,  and  to  take  two  of  the 
parts,  must  be  a  type  of  operation  which  had 
often  occurred.  Accordingly,  we  need  not  be 
surprised  that  the  men  of  remote  civilizations 
were  familiar  with  the  idea  of  two-thirds,  and 

71 
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with  allied  notions.  Thus  as  the  first  genera- 
lization of  number  we  place  the  concept  of 

fractions.  The  Greeks  thought  of  this  sub- 
ject rather  in  the  form  of  ratio,  so  that  a 

Greek  would  naturally  say  that  a  line  of 
two  feet  in  length  bears  to  a  line  of  three 
feet  in  length  the  ratio  of  2  to  3.  Under 
the  influence  of  our  algebraic  notation  we 
would  more  often  say  that  one  line  was 
two-thirds  of  the  other  in  length,  and  would 
think  of  two-thirds  as  a  numerical  mul- 
tiplier. 

In  connection  with  the  theory  of  ratio,  or 
fractions,  the  Greeks  made  a  great  discovery, 
which  has  been  the  occasion  of  a  large  amount 
of  philosophical  as  well  as  mathematical 
thought.  They  found  out  the  existence  of 

*'  incommensurable "  ratios.  They  proved, 
in  fact,  during  the  course  of  their  geometrical 
investigations  that,  starting  with  a  line  of  any 
length,  other  lines  must  exist  whose  lengths 
do  not  bear  to  the  original  length  the  ratio 
of  any  pair  of  integers — or,  in  other  words, 
that  lengths  exist  which  are  not  any  exact 
fraction  of  the  original  length. 

For  example,  the  diagonal  of  a  square  cannot 
be  expressed  as  any  fraction  of  the  side  of  the 
same  square ;  in  our  modern  notation  the 
length  of  the  diagonal  is  V2  times  the  length 
of  the  side.  But  there  is  no  fraction  which 

exactly  represents  \/2.     We  can  approximate 
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to  y/2  as  closely  as  we  like,  but   we  never 

exactly  reach  its  value.     For  example,  —_  is 
9 

just  less  than  2,  and  -  is  greater  than  2,  so 4 

7  3 
that  \/2  lies  between  -  and  -•     But  the  best 

systematic  way  of  approximating  to  V^  in 
obtaining  a  series  of  decimal  fractions,  each 
bigger  than  the  last,  is  by  the  ordinary  method 
of  extracting  the  square  root ;  thus  the  series 
.     ,     14.    141    1414  , 

^^  ̂'  10'  rob'  ibbo'  ̂ ^^  ̂^  °^- 
Ratios  of  this  sort  are  called  by  the  Greeks 

incommensurable.  They  have  excited  from 
the  time  of  the  Greeks  onwards  a  great  deal 
of  philosophic  discussion,  and  the  difficulties 
connected  with  them  have  only  recently  been 
cleared  up. 
We  will  put  the  incommensurable  ratios 

with  the  fractions,  and  consider  the  whole 
set  of  integral  numbers,  fractional  numbers, 
and  incommensurable  numbers  as  forming 
one  class  of  numbers  which  we  will  call  "  real 
numbers."  We  always  think  of  the  real 
numbers  as  arranged  in  order  of  magnitude, 
starting  from  zero  and  going  upwards,  and 
becoming  indefinitely  larger  and  larger  as  we 
proceed.     The  real  numbers  are  conveniently 
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represented  by  points  on  a  line.     Let  OX  be 

0     I     1     I     ̂     I     S     I     4. 2  2  2  2   
OMANBPCQD        X 

any  line  bounded  at  0  and  stretching  away  in- 
definitely in  the  direction  OX.  Take  any  con- 

venient point,  A,  on  it,  so  that  OA  represents 
the  unit  length ;  and  divide  off  lengths  AB, 
BCy  CD,  and  so  on,  each  equal  to  OA.  Then 
the  point  O  represents  the  number  0,  A  the 
number  1,  B  the  number  2,  and  so  on.  In 
fact  the  number  represented  by  any  point  is 
the  measure  of  its  distance  from  O,  in  terms 
of  the  unit  length  OA.  The  points  between 
O  and  A  represent  the  proper  fractions  and 
the  incommensurable  numbers  less  than  1 ; 

the  middle  point  of  OA  represents  -,  that  of 

AB  represents  -,  that  of  BC  represents  -,  and 

so  on.  In  this  way  every  point  on  OX  repre- 
sents some  one  real  number,  and  every  real 

number  is  represented  by  some  one  point  on 
OX. 
The  series  (or  row)  of  points  along  OX^ 

starting  from  O  and  moving  regularly  in  the 
direction  from  O  to  X,  represents  the  real 
numbers  as  arranged  in  an  ascending  order 
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of  size,   starting  from  zero  and  continually 
increasing  as  we  go  on. 

All  this  seems  simple  enough,  but  even  at 
this  stage  there  are  some  interesting  ideas  to 
be  got  at  by  dwelling  on  these  obvious  facts. 
Consider  the  series  of  points  which  represent 
the  integral  numbers  only,  namely,  the  points, 
O,  A,  B,  C,  D,  etc.  Here  there  is  a  first  point 
O,  a  definite  next  point,  A,  and  each  point, 
such  as  A  or  B,  has  one  definite  immediate 

predecessor  and  one  definite  immediate  suc- 
cessor, with  the  exception  of  0,  which  has  no 

predecessor ;  also  the  series  goes  on  in- 
definitely without  end.  This  sort  of  order  is 

called  the  type  of  order  of  the  integers ;  its 
essence  is  the  possession  of  next-door  neigh- 

bours on  either  side  with  the  exception  of 
No.  1  in  the  row.  Again  consider  the  integers 
and  fractions  together,  omitting  the  points 
which  correspond  to  the  incommensurable 
ratios.  The  sort  of  serial  order  which  we  now 
obtain  is  quite  different.  There  is  a  first 
term  0  ;  but  no  term  has  any  immediate  pre- 

decessor or  immediate  successor.  This  is 
easily  seen  to  be  the  case,  for  between  any 
two  fractions  we  can  always  find  another 
fraction  intermediate  in  value.  One  very 
simple  way  of  doing  this  is  to  add  the  fractions 
together  and  to  halve  the  result.  For  ex- 

ample, between  f  and  f ,  the  fraction  i  (|  +  l)» 
that  is  It,  lies ;    and  between  f  and  ix  the 



76    INTRODUCTION  TO  MATHEMATICS 

fraction  |  (|  +  yl)»  that  is  ||,  lies  ;  and  so  on 
indefinitely.     Because   of   this   property  the 

series  is  said  to  be  "  compact."     There  is  no 
end  point  to  the  series,  which  increases  in- 

definitely without  limit  as  we  go  along  the 
line  OX.     It  would  seem  at  first  sight  as 
though  the  type  of  series  got  in  this  way  from 
the  fractions,  always  including  the  integers, 
would  be  the  same  as  that  got  from  all  the 
real  numbers,  integers,  fractions,  and  incom- 
mensurables  taken  together,  that  is,  from  all 
the  points  on  the  line  OX.     All  that  we  have 
hitherto   said   about   the   series   of  fractions 
applies  equally  well  to  the  series  of  all  real 
numbers.     But   there   are   important   differ- 

ences which  we  now  proceed  to  develop.     The 
absence  of  the  incommensurables  from  the 
series  of  fractions  leaves  an  absence  of  end- 
points  to  certain  classes.     Thus,  consider  the 
incommensurable  V2.     In  the  series  of  real 
numbers  this  stands  between  all  the  numbers 
whose  squares  are  less  than  2,  and  all  the 
numbers  whose  squares  are  greater  than  2. 
But  keeping  to  the  series  of  fractions  alone 
and  not  thinking  of  the  incommensurables,  so 

that  we  cannot  bring  in  \/2,  there  is  no  frac- 
tion which  has  the  property  of  dividing  off 

the  series  into  two  parts  in  this  way,  i.e.  so 
that  all  the  members  on  one  side  have  their 
squares  less  than  2,  and  on  the  other  side 
greater  than  2.     Hence  in  the  series  of  frac- 
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tions  there  is  a  quasi-gap  where  V2  ought  to 
come.  This  presence  of  quasi-gaps  in  the 
series  of  fractions  may  seem  a  small  matter ; 
but  any  mathematician,  who  happens  to  read 
this,  knows  that  the  possible  absence  of  limits 
or  maxima  to  a  class  of  numbers,  which  yet 

does  not  spread  over  the  whole  series  of  num- 
bers, is  no  small  evil.  It  is  to  avoid  this 

difficulty  that  recourse  is  had  to  the  incom- 
mensurables,  so  as  to  obtain  a  complete  series 
with  no  gaps. 

There  is  another  even  more  fundamental 
difference  between  the  two  series.  We  can 

rearrange  the  fractions  in  a  series  like  that  of 
the  integers,  that  is,  with  a  first  term,  and 
such  that  each  term  has  an  immediate  suc- 

cessor and  (except  the  first  term)  an  immediate 
predecessor.  We  can  show  how  this  can  be 
done.  Let  ever\-  term  in  the  series  of  fractions 
and  integers  be  written  in  the  fractional  form 
by  writing  y  for  1,  i  for  2,  and  so  on  for  all  the 
integers,  excluding  0,  Also  for  the  moment 
we  will  reckon  fractions  which  are  equal  in 
value  but  not  reduced  to  their  lowest  terms 

as  distinct ;  so  that,  for  example,  until  further 

notice  f,  z>  h  t?*  etc.,  are  all  reckoned  as  dis- 
tinct. Now  group  the  fractions  into  classes 

by  adding  together  the  numerator  and  de- 
nominator of  each  term.  For  the  sake  of 

brevity  call  this  sum  of  the  numerator  and 
denominator  of  a  fraction  its  index.     Thus  7 
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is  the  index  of  4,  and  also  of  J,  and  of  |.  Let 
the  fractions  in  each  class  be  all  fractions 
which  have  some  specified  index,  which  may 
therefore  also  be  called  the  class  index.  Now 
arrange  these  classes  in  the  order  of  magni- 

tude of  their  indices.  The  first  class  has 
the  index  2,  and  its  only  member  is  { ;  the 
second  class  has  the  index  3,  and  its  members 
are  ̂   and  f  ;  the  third  class  has  the  index 
4,  and  its  members  are  ̂ ,  |,  f;  the  fourth 
class  has  the  index  5,  and  its  members  are 
if  f  >  l»  T ;  ̂ ^^  so  on.  It  is  easy  to  see  that 
the  number  of  members  (still  including  frac- 

tions not  in  their  lowest  terms)  belonging  to 
any  class  is  one  less  than  its  index.  Also  the 
members  of  any  one  class  can  be  arranged 
in  order  by  taking  the  first  member  to  be  the 
fraction  with  numerator  1,  the  second  mem- 

ber to  have  the  numerator  2,  and  so  on,  up  to 
(n— 1)  where  n  is  the  index.  Thus  for  the 
class  of  index  n,  the  members  appear  in  the 
order. 

1   2  3  n-1       rru   r,   ->   ~, .  .  .,  — =— .      Ihe   mem- n—  1  n—  2   n— 3  1 
bers  of  the  first  four  classes  have  in  fact  been 
mentioned  in  this  order.  Thus  the  whole  set 
of  fractions  have  now  been  arranged  in  an 
order  like  that  of  the  integers.     It  runs  thus 

112   1    r2l   3   12   3   4 

r  2'  V  3'  L2J'  T'  4'  3*  2'  P  •  *  " 



GENERALIZATIONS  OF  NUMBERS    79 

n-2      12         3  n-1   1 

1~'  in'  K^2'  ;r^'  •  *  "  "l~'  n' 
and  so  on. 

Now  we  can  get  rid  of  all  repetitions  of 
fractions  of  the  same  value  by  simply  striking 
them  out  whenever  they  appear  after  their 
first  occurrence.  In  the  few  initial  terms 
written  down  above,  |  which  is  enclosed  above 
in  square  brackets  is  the  only  fraction  not  in 
its  lowest  terms.  It  has  occurred  before  as 
X.  Thus  this  must  be  struck  out.  But  the 
series  is  still  left  with  the  same  properties, 
namely,  (a)  there  is  a  first  term,  (6)  each  term 
has  next-door  neighbours,  (c)  the  series  goes 
on  without  end. 

It  can  be  proved  that  it  is  not  possible  to 
arrange  the  whole  series  of  real  numbers  in 
this  way.  This  curious  fact  was  discovered 
by  Georg  Cantor,  a  German  mathematician 
still  living ;  it  is  of  the  utmost  importance 
in  the  philosophy  of  mathematical  ideas.  We 
are  here  in  fact  touching  on  the  fringe  of  the 
great  problems  of  the  meaning  of  continuity 
and  of  infinity. 

Another  extension  of  number  comes  from 
the  introduction  of  the  idea  of  what  has  been 
variously  named  an  operation  or  a  step, 
names  which  are  respectively  appropriate 
from  slightly  different  points  of  view.  We 
will  start  with  a  particular  case.     Consider 
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the  statement  2+3=5.  We  add  3  to  2  and 
obtain  5.  Think  of  the  operation  of  adding 
3:  let  this  be  denoted  by  +3.  Again  4—3 
=1.  Think  of  the  operation  of  subtracting 
3  :  let  this  be  denoted  by  —3.  Thus  instead 
of  considering  the  real  numbers  in  themselves, 
we  consider  the  operations  of  adding  or  sub- 

tracting them :  instead  of  ̂ /2,,  we  consider 

+  V'2  and  —a/2,  namely  the  operations  of 
adding  •\/2  and  of  subtracting  ̂ 2.  Then  we 
can  add  these  operations,  of  course  in  a 
different  sense  of  addition  to  that  in  which  we 
add  numbers.  The  sum  of  two  operations  is 
the  single  operation  which  has  the  same  effect 
as  the  two  operations  applied  successively. 
In  what  order  are  the  two  operations  to  be 
applied  ?  The  answer  is  that  it  is  indifferent, 
since  for  example 

2+3+1=2+1+3; 

so  that  the  addition  of  the  steps  +3  and  +1 
is  commutative. 
Mathematicians  have  a  habit,  which  is 

puzzling  to  those  engaged  in  tracing  out 
meanings,  but  is  very  convenient  in  practice, 
of  using  the  same  symbol  in  different  though 
allied  senses.  The  one  essential  requisite  for 
a  symbol  in  their  eyes  is  that,  whatever  its 
possible  varieties  of  meaning,  the  formal  laws 
for  its   use   shall   always   be  the  same.     In 



GENERALIZATIONS  OF  NUMBERS   81 

accordance  with  this  habit  the  addition  of 
operations  is  denoted  by  +  as  well  as  the 
addition  of  numbers.  Accordingly  we  can 
write 

(+3)+(+l)  =  +4; 

where  the  middle  +  on  the  left-hand  side 
denotes  the  addition  of  the  operations  +3 
and  +1.  But,  furthermore,  we  need  not  be 
so  very  pedantic  in  our  symbolism,  except  in 
the  rare  instances  when  we  are  directly  tracing 
meanings  ;  thus  we  always  drop  the  first  -|- 
of  a  line  and  the  brackets,  and  never  vrrite 
two  +  signs  running.  So  the  above  equation 
becomes 

3+1=4, 

which  we  interpret  as  simple  numerical  addi- 
tion, or  as  the  more  elaborate  addition  of 

operations  which  is  fully  expressed  in  the 
previous  way  of  WTiting  the  equation,  or 
lastly  as  expressing  the  result  of  applying 
the  operation  -fl  to  the  number  3  and  ob- 

taining the  number  4.  Any  interpretation 
which  is  possible  is  always  correct.  But  the 
only  interpretation  which  is  always  possible, 
under  certain  conditions,  is  that  of  operations. 
The  other  interpretations  often  give  non- 

sensical results. 
This  leads  us  at  once  to  a  question,  which 

must    have    been    rising    insistently    in    the 
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reader's  mind:  What  is  the  use  of  all  this 
elaboration  ?  At  this  point  our  friend,  the 
practical  man,  will  surely  step  in  and  insist  on 
sweeping  away  all  these  silly  cobwebs  of  the 
brain.  The  answer  is  that  what  the  mathe- 

matician is  seeking  is  Generality.  This  is  an 
idea  worthy  to  be  placed  beside  the  notions 
of  the  Variable  and  of  Form  so  far  as  concerns 
its  importance  in  governing  mathematical 
procedure.  Any  limitation  whatsoever  upon 
the  generality  of  theorems,  or  of  proofs,  or  of 
interpretation  is  abhorrent  to  the  mathe- 

matical instinct.  These  three  notions,  of  the 
variable,  of  form,  and  of  generality,  compose 
a  sort  of  mathematical  trinity  which  preside 
over  the  whole  subject.  They  all  really 
spring  from  the  same  root,  namely  from  the 
abstract  nature  of  the  science. 

Let  us  see  how  generality  is  gained  by  the 
introduction  of  this  idea  of  operations.  Take 
the  equation  a; +1=3;  the  solution  is  x=2. 
Here  we  can  interpret  our  symbols  as  mere 

numbers,  and  the  recourse  to  "  operations  '- 
is  entirely  unnecessary.  But,  if  aj  is  a  mere 
number,  the  equation  a; +3=1  is  nonsense. 
For  X  should  be  the  number  of  things  which 
remain  when  you  have  taken  3  things  away 
from  1  thing ;  and  no  such  procedure  is 
possible.  At  this  point  our  idea  of  algebraic 
form  steps  in,  itself  only  generalization  under 
another  aspect.    We  consider,  therefore,  the 
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general  equation  of  the  same  form  as  a;  +1  =3. 
This  equation  is  x-{-a=b,  and  its  solution  is 
X  =b  —a.  Here  our  difficulties  become  acute  ; 
for  this  form  can  only  be  used  for  the  numeri- 

cal interpretation  so  long  as  b  is  greater  than 
a,  and  we  cannot  say  without  qualification 
that  a  and  b  may  be  any  constants.  In  other 
words  we  have  introduced  a  limitation  on 

the  variability  of  the  "  constants  "  a  and  6, 
which  we  must  drag  like  a  chain  throughout 
all  our  reasoning.  Really  prolonged  mathe- 

matical investigations  would  be  impossible 
under  such  conditions.  Every  equation 
would  at  last  be  buried  under  a  pile  of  limita- 

tions. But  if  we  now  interpret  our  symbols 

as  "  operations,"  all  limitation  vanishes  like 
magic.  The  equation  a; +1=3  gives  x  =  -\-2, 
the  equation  a; +3=1  gives  x=  —2,  the  equa- 

tion x-{-a=b  gives  x=b—a  which  is  an  opera- 
tion of  addition  or  subtraction  as  the  case 

may  be.  We  need  never  decide  whether  b—a 
represents  the  operation  of  addition  or  of 
subtraction,  for  the  rules  of  procedure  with 
the  symbols  are  the  same  in  either  case. 

It  does  not  fall  within  the  plan  of  this  work 
to  write  a  detailed  chapter  of  elementary 
algebra.  Our  object  is  merely  to  make  plain 
the  fundamental  ideas  which  guide  the  forma- 

tion of  the  science.  Accordingly  we  do  not 
further  explain  the  detailed  rules  by  which 

the  "  positive  and  negative  numbers "  are 
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multiplied  and  otherwise  combined.  We  have 
explained  above  that  positive  and  negative 
numbers  are  operations.  They  have  also 

been  called  "  steps."  Thus  +3  is  the  step 
by  which  we  go  from  2  to  5,  and  —3  is  the 
step  backwards  by  which  we  go  from  5  to  2. 
Consider  the  line  OX  divided  in  the  way  ex- 

plained in  the  earlier  part  of  the  chapter,  so 
that  its  points  represent  numbers.     Then  +2 

y,    D'  C  B'  A'         +1  +2  +3  „ 
-^  _3  _2  -1  0   ̂       B    C   D  E 

is  the  step  from  0  to  JB,  or  from  A  to  C,  or 
(if  the  divisions  are  taken  backwards  along 

OX')  from  C  to  A',  or  from  D'  to  B',  and  so 
on.  Similarly  —2  is  the  step  from  0  to  B\ 
or  from  B'  to  D\  or  from  B  to  0,  or  from  C to  A. 

We  may  consider  the  point  which  is  reached 
by  a  step  from  O,  as  representative  of  that 
step.  Thus  A  represents  +1,  B  represents 

+2,  A'  represents  —1,  B'  represents  —2,  and 
so  on.  It  will  be  noted  that,  whereas  previ- 

ously with  the  mere  "unsigned  "  real  numbers 
the  points  on  one  side  of  0  only,  namely  along 
OX,  were  representative  of  numbers,  now 
with  steps  every  point  on  the  whole  line 
stretching  on  both  sides  of  0  is  representative 
of  a  step.  This  is  a  pictorial  representation 
of  the  superior  generality  introduced  by  the 
positive  and  negative  numbers,  namely  the 
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operations  or  steps.  These  "signed "  num- 
bers are  also  particular  cases  of  what  have 

been  called  vectors  (from  the  Latin  %-eho,  I 
draw  or  carry).  For  we  may  think  of  a 
particle  as  carried  from  0  to  ̂ ,  or  from  A 
to  B. 

In  suggesting  a  few  pages  ago  that  the 
practical  man  would  object  to  the  subtlety 
involved  by  the  introduction  of  the  positive 
and  negative  numbers,  we  were  libelling  that 
excellent  individual.  For  in  truth  we  are  on 

the  scene  of  one  of  his  greatest  triumphs.  If 
the  truth  must  be  confessed.,  it  was  the  practi- 

cal man  himself  who  first  employed  the  actual 

symbols  +  and  — .  Their  origin  is  not  very 
certain,  but  it  seems  most  probable  that  they 
arose  from  the  marks  chalked  on  chests  of 

goods  in  German  warehouses,  to  denote  excess 
or  defect  from  some  standard  weight.  The 
earliest  notice  of  them  occurs  in  a  book  pub- 

lished at  Leipzig,  in  a.d.  1489.  They  seem 
first  to  have  been  employed  in  mathematics 
by  a  German  mathematician,  Stifel,  in  a  book 
published  at  Nuremburg  in  1544  a.d.  But 
then  it  is  only  recently  that  the  Germans 
have  come  to  be  looked  on  as  emphatically 
a  practical  nation.  There  is  an  old  epigram 
which  assigns  the  empire  of  the  sea  to  the 
English,  of  the  land  to  the  French,  and  of  the 
clouds  to  the  Germans.  Surely  it  was  from 
the  clouds  that  the  Germans  fetched  +  and 
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~ ;  the  ideas  which  these  symbols  have 
generated  are  much  too  important  for  the 
welfare  of  humanity  to  have  come  from  the 
sea  or  from  the  land. 

The  possibilities  of  application  of  the  posi- 
tive and  negative  numbers  are  very  obvious. 

If  lengths  in  one  direction  are  represented  by 
a  positive  number,  those  in  the  opposite 
direction  are  represented  by  negative  numbers. 
If  a  velocity  in  one  direction  is  positive,  that 
in  the  opposite  direction  is  negative.  If  a 
rotation  round  a  dial  in  the  opposite  direction 
to  the  hands  of  a  clock  (anti-clockwise)  is 
positive,  that  in  the  clockwise  direction  is 
negative.  If  a  balance  at  the  bank  is  posi- 

tive, an  overdraft  is  negative.  If  vitreous 
electrification  is  positive,  resinous  electrifica- 

tion is  negative.  Indeed,  in  this  latter  case, 
the  terms  positive  electrification  and  negative 
electrification,  considered  as  mere  names, 
have  practically  driven  out  the  other  terms. 
An  endless  series  of  examples  could  be  given. 
The  idea  of  positive  and  negative  numbers 
has  been  practically  the  most  successful  of 
mathematical  subtleties. 



CHAPTER   VII 

IMAGINARY   NUMBERS 

If  the  mathematical  ideas  dealt  with  in  the 
last  chapter  have  been  a  popular  success, 
those  of  the  present  chapter  have  excited 
almost  as  much  general  attention.  But  their 
success  has  been  of  a  different  character,  it 
has  been  what  the  French  term  a  succes  de 
scandale.  Not  only  the  practical  man,  but 
also  men  of  letters  and  philosophers  have  ex- 

pressed their  bewilderment  at  the  devotion 
of  mathematicians  to  mysterious  entities 
which  by  their  very  name  are  confessed  to  be 
imaginary.  At  this  point  it  may  be  useful 
to  observe  that  a  certain  type  of  minor  in- 

tellect is  always  worrying  itself  and  others  by 
discussion  as  to  the  applicability  of  technical 
terms.  Are  the  incommensurable  numbers 
properly  called  numbers  ?  Are  the  positive 
and  negative  numbers  really  numbers  ?  Are 
the  imaginary  numbers  imaginary,  and  are 
they  numbers  ? — are  types  of  such  futile 
questions.  Now,  it  cannot  be  too  clearly 
understood  that,  in  science,  technical  terms 
are  names  arbitrarily  assigned,  like  Christian 

87 
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names  to  children.  There  can  be  no  question 
of  the  names  being  right  or  wrong.  They 
may  be  judicious  or  injudicious  ;  for  they  can 
sometimes  be  so  arranged  as  to  be  easy  to 
remember,  or  so  as  to  suggest  relevant  and 
important  ideas.  But  the  essential  principle 
involved  was  quite  clearly  enunciated  in 
Wonderland  to  Alice  by  Humpty  Dumpty, 
when  he  told  her,  a  propos  of  his  use  of  words, 

"  I  pay  them  extra  and  make  them  mean 
what  I  like."  So  we  will  not  bother  as  to 
whether  imaginary  numbers  are  imaginary, 
or  as  to  whether  they  are  numbers,  but  will 
take  the  phrase  as  the  arbitrary  name  of  a 
certain  mathematical  idea,  which  we  will  now 
endeavour  to  make  plain. 

The  origin  of  the  conception  is  in  every 
way  similar  to  that  of  the  positive  and  nega- 

tive numbers.  In  exactly  the  same  way  it 
is  due  to  the  three  great  mathematical  ideas 
of  the  variable,  of  algebraic  form,  and  of 
generalization.  The  positive  and  negative 
numbers  arose  from  the  consideration  of 

equations  like  a? +1=3,  a; +3=1,  and  the 
general  form  x-\-a=b.  Similarly  the  origin 
of  imaginary  numbers  is  due  to  equations  like 
ir2+l=3,  cr2+3=l,  and  x^-^a=b.  Exactly 
the  same  process  is  gone  through.  The  equa- 

tion a;2 +1  =3  becomes  x^=2,  and  this  has  two 
solutions,  either  x  =  -\-  \/2,  or  a?  =  —  V2.  The 
statement  that   there   are  these  alternative 
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solutions  is  usually  written  iC  =  ±V2.  So  far 
all  is  plain  sailing,  as  it  was  in  the  previous 
case.  But  now  an  analogous  difficulty  arises. 
For  the  equation a:2-|-3=i  gives  x^=  —2  and 
there  is  no  positive  or  negative  number  which, 
when  multiplied  by  itself,  will  give  a  negative 
square.  Hence,  if  our  sjTnbols  are  to  mean 
the  ordinary  positive  or  negative  numbers, 

there  is  no  solution  to  x'^=  —2,  and  the  equa- 
tion is  in  fact  nonsense.  Thus,  finally  taking 

the  general  form  x'^-\-a=h,  we  find  the  pair 
of  solutions  x  =  :^y/{h—a),  when,  and  only 
when,  h  is  not  less  than  a.  Accordingly  we 

cannot  say  unrestrictedly  that  the  "  con- 
stants '*  a  and  h  may  be  any  numbers,  that  is, 

the  "  constants  "  a  and  h  are  not,  as  they 
ought  to  be,  independent  unrestricted  "  vari- 

ables "  ;  and  so  again  a  host  of  limitations and  restrictions  will  accumulate  round  our 

work  as  we  proc'eed. The  same  task  as  before  therefore  awaits 
us  :  we  must  give  a  new  interpretation  to  our 

symbols,  so  that  the  solutions  :£V(6— fl)  for 
the  equation  x~-\-a=b  always  have  meaning. 
In  other  words,  we  require  an  interpretation 
of  the  symbols  so  that  y/a  always  has  meaning 
whether  a  be  positive  or  negative.  Of 
course,  the  interpretation  must  be  such  that 
all  the  ordinary  formal  laws  for  addition,  sub- 

traction, multiplication,  and  division  hold 
good  ;  and  also  it  must  not  interfere  with  the 



90    INTRODUCTION  TO  MATHEMATICS 

generality  which  we  have  attained  by  the  use 
of  the  positive  and  negative  numbers.  In 
fact,  it  must  in  a  sense  include  them  as 
special  cases.  When  a  is  negative  we  may 
write  — c2  for  it,  so  that  c^  is  positive.     Then 

Va  =  V(-c2)  =V  (-l)x'^} 
=  V(-1)  Vc^=c  V{-1). 

Hence,  if  we  can  so  interpret  our  symbols  that 
V(^i)  has  a  meaning,  we  have  attained  our 

object.  Thus  V(— 1)  has  come  to  be  looked 
on  as  the  head  and  forefront  of  all  the 
imaginary  quantities. 

This  business  of  finding  an  interpretation 
for  V(— 1)  is  a  much  tougher  job  than  the 
analogous  one  of  interpreting  —1.  In  fact, 
while  the  easier  problem  was  solved  almost 
instinctively  as  soon  as  it  arose,  it  at  first 
hardly  occurred,  even  to  the  greatest  mathe- 

maticians, that  a  problem  existed  which  was 
perhaps  capable  of  solution.  Equations  like 
x^=  —3,  when  they  arose,  were  simply  ruled aside  as  nonsense. 

However,  it  came  to  be  gradually  perceived 
during  the  eighteenth  century,  and  even 
earlier,  how  very  convenient  it  would  be  if 
an  interpretation  could  be  assigned  to  these 
nonsensical  symbols.  Formal  reasoning  with 
these  symbols  was  gone  through,  merely 
assuming   that    they    obeyed    the    ordinary 
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algebraic  laws  of  transformation  ;  and  it  was 
seen  that  a  whole  world  of  interesting  results 
could  be  attained,  if  only  these  symbols  might 
legitimately  be  used.  Many  mathematicians 
were  not  then  very  clear  as  to  the  logic  of 
their  procedure,  and  an  idea  gained  ground 
that,  in  some  mysterious  way,  symbols  which 
mean  nothing  can  by  appropriate  manipula- 

tion yield  valid  proofs  of  propositions.  No- 
thing can  be  more  mistaken.  A  symbol 

which  has  not  been  properly  defined  is  not  a 
symbol  at  all.  It  is  merely  a  blot  of  ink  on 
paper  which  has  an  easily  recognized  shape. 
Nothing  can  be  proved  by  a  succession  of 
blots,  except  the  existence  of  a  bad  pen  or  a 
careless  writer.  It  was  during  this  epoch 

that  the  epithet  "  imaginary "  came  to  be 

applied  to  V'(— 1).  What  these  mathema- 
ticians had  really  succeeded  in  proving  were 

a  series  of  hypothetical  propositions,  of  which 
this  is  the  blank  form:  If  interpretations 
exist  for  V(— 1)  and  for  the  addition,  sub- 

traction, multiplication,  and  division  of 

Vi—I)  which  make  the  ordinary  algebraic 
rules  {e.g.  x-\-y=y-{-x,  etc.)  to  be  satisfied, 
then  such  and  such  results  follows.  It  was 
natural  that  the  mathematicians  should  not 

always  appreciate  the  big  "If,"  which  ought 
to  have  preceded  the  statements  of  their  re- 
sults. 

As  may   be   expected   the   interpretation. 
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when  found,  was  a  much  more  elaborate  affair 
than  that  of  the  negative  numbers  and  the 
reader's  attention  must  be  asked  for  some 
careful  preliminary  explanation.  We  have 
already  come  across  the  representation  of  a 
point  by  two  numbers.     By  the  aid  of  the 
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positive  and  negative  numbers  we  can  now 
represent  the  position  of  any  point  in  a  plane 
by  a  pair  of  such  numbers.  Thus  we  take 

the  pair  of  straight  lines  XOX'  and  YO  F',  at 
right  angles,  as  the  "  axes  "  from  which  we 
start  all  our  measurements.  Lengths  mea- 

sured along  OX  and  OY  are  positive,  and 

measured  backwards  along  OX'  and  OY'  are 
negative.  Suppose  that  a  pair  of  numbers, 
written  in  order,e.g.  (+3,  -f  1),  so  that  there 
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is  a  first  number  (+3  in  the  above  example), 

and  a  second  number  (+1  in  the  above  ex- 
ample), represents  measurements  from  O 

along  XOX'  for  the  first  number,  and  along 
yOF' for  the  second  number.  Thus  {cf.  fig.  9)  in 
( -f-3,  +1)  a  length  of  3  units  is  to  be  measured 

along  XOX'  in  the  positive  direction,  that 
is  from  O  towards  X,  and  a  length  +1 

measured  along  YOY'  in  the  positive  direc- 
tion, that  is  from  O  towards  Y.  Similarly  in 

(—3,  +1)  the  length  of  3  units  is  to  be 
measured  from  0  towards  X  ,  and  of  1  unit 

from  O  towards  Y'.  Also  n\  (—3,  —1)  the 
two  lengths  are  to  be  measured  along  OX' 
and  OY'  respectively,  and  in  (-f3,  —1)  along 
OX  and  OY'  respectively.  Let  us  for  the 
moment  call  such  a  pair  of  numbers  an 

"  ordered  couple."  Then,  from  the  two  num- 
bers 1  and  3,  eight  ordered  couples  can  be 

generated,  namely 

(+1,  +3),  (-1,  +3),  (-1,  -3),  (+1,  -3), 
(+3,  +1),  (-3,  -M),  (-3,  -1),  (+3,  -1). 

Each  of  these  eight  "ordered  couples  "  directs 
a  process  of  measurement  along  XOX'  and 
YOY'  which  is  different  from  that  directed 
by  any  of  the  others. 

The  processes  of  measurement  represented 
by  the  last  four  ordered  couples,  mentioned 
above,  are  given  pictorially  in  the  figure. 
The  lengths  OM  and  OX  together  correspond 
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to  (+3,  +1),  the  lengths  OM'  and  ON 
together  correspond  to  (—3,  +1),  OM'  and 
ON'  together  to  (—3,  —1),  and  OM  and 
ON'  together  to  (+8,  —1).  But  by  com- 

pleting the  various  rectangles,  it  is  easy  to 
see  that  the  point  P  completely  determines 
and   is   determined   by   the   ordered  couple 
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(+3,  +1),  the  point  P'  by  (-3,  +1),  the 
point  P"  by  (-3,  -1),  and  the  point  P'"  by 
(+3,  —1).  More  generally  in  the  previous 
figure  (8),  the  point  P  corresponds  to  the 
ordered  couple  (a;,  y),  where  x  and  y  in  the 
figure  are  both  assumed  to  be  positive,  the 

point  P'  corresponds  to  {x',  y),  where  x'  in 
the  figure  is  assumed  to  be  negative,  P"  to 
(a;',  2/'),  and  P'"  to  {x,  y').    Thus  an  ordered 
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couple  {x,  y),  where  x  and  y  are  any  positive 
or  negative  numbers,  and  the  corresponding 
point  reciprocally  determine  each  other.  It 
is  convenient  to  introduce  some  names  at  this 
juncture.  In  the  ordered  couple  {x,  y)  the 
first  number  x  is  called  the  "  abscissa  "  of  the 
corresponding  point,  and  the  second  number 

y  is  called  the  "  ordinate  "  of  the  point,  and 
the  two  numbers  together  are  called  the  "  co- 

ordinates "  of  the  point.  The  idea  of  deter- 
mining the  position  of  a  point  by  its  "  co- 

ordinates "  was  by  no  means  new  when  the 
theory  of  "  imaginaries  "  was  being  formed. 
It  was  due  to  Descartes,  the  great  French 
mathematician  and  philosopher,  and  appears 
in  his  Discours  published  at  Ley  den  in  1637 
A.D.  The  idea  of  the  ordered  couple  as  a 
thing  on  its  own  account  is  of  later  growth 
and  is  the  outcome  of  the  efforts  to  interpret 
imaginaries  in  the  most  abstract  way  possible. 

It  may  be  noticed  as  a  further  illustration 
of  this  idea  of  the  ordered  couple,  that  the 
point  M  in  fig.  9  is  the  couple  (+3,  0),  the 

point  N  is  the  couple  (0,  +1),  the  point  M' 
the  couple  (—3,  0),  the  point  N'  the  couple 
(0,  —1),  the  point  O  the  couple  (0,  0). 

Another  way  of  representing  the  ordered 
couple  {x,  y)  is  to  think  of  it  as  representing 
the  dotted  line  OP  (cf .  fig.  8),  rather  than  the 
point  P.  Thus  the  ordered  couple  represents 

a  line  drawn  from  an  "  origin,"  O,  of  a  certain 
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length  and  in  a  certain  direction.  The  line 
OP  may  be  called  the  vector  line  from  O  to 
P,  or  the  step  from  O  to  P.  We  see,  therefore, 
that  we  have  in  this  chapter  only  extended 
the  interpretation  which  we  gave  formerly  of 
the  positive  and  negative  numbers.  This 
method  of  representation  by  vectors  is  very 
useful  when  we  consider  the  meaning  to  be 
assigned  to  the  operations  of  the  addition  and 
multiplication  of  ordered  couples. 
We  will  now  go  on  to  this  question,  and 

ask  what  meaning  we  shall  find  it  convenient 
to  assign  to  the  addition  of  the  two  ordered 

couples  (a?,  y)  and  {x',  y').  The  interpreta- 
tion must,  (a)  make  the  result  of  addition 

to  be  another  ordered  couple,  (6)  make  the 
operation  commutative  so  that  {x,  y)-\- 

{x',  y')={x\  y')-\-{x,  y),  (c)  make  the  opera- tion associative  so  that 

{{x,y)-i-{x\  y')}  +  {u,v) 
=  («»  y)  +  {{x'>  «/')+  {u>  v)}, 

(d)    make  the   result  of   subtraction  unique, 
so   that    when    we    seek    to    determine    the 
unknown   ordered    couple    {x,    y)    so    as    to 
satisfy  the  equation 

{x,  y)-\-{a,  h)={c,  d), 
there  is  one  and  only  one  answer  which  we 
can  represent  by 

{x,  y)={c,  d)-{a,  b). 



IMAGINARY   NUMBERS  97 

All  these  requisites  are  satisfied  by  taking 

{x,  y)-\-{x\  y')  to  mean  the  ordered  couple 
{x-\-x\  y-\-y')'  Accordingly  by  definition  we 
put 

{x,  y)^-{x\  y')={x-\-x',  y+y'). 
Notice  that  here  we  have  adopted  the  mathe- 

matical habit  of  using  the  same  symbol  +  in 
different  senses.  The  -f  on  the  left-hand  side 
of  the  equation  has  the  new  meaning  of  -f- 
which  we  are  just  defining ;  while  the  two 

-f's  on  the  right-hand  side  have  the  meaning 
of  the  addition  of  positive  and  negative  num- 

bers (operations)  which  was  defined  in  the 
last  chapter.  No  practical  confusion  arises 
from  this  double  use. 

As  examples  of  addition  we  have 

(+3,  +l)+(+2,  -|-6)=(+5,  +7), 
(+3,  -  l)  +  (-2,  -  6)=(+l,  -  7), 
(+3,+l)  +  (-3,  -1)=(0,  0). 

The  meaning  of  subtraction  is  now  settled 
for  us.     We  find  that 

{x,  y)-{u,  v)={x-u,  y-v). 
Thus 

(+3,  +  2)-(+l,  +  l)=(+2,  +  1), 
and 

(+1,  -2)-(+2,  -4)  =  {-l,  +2), 
and 

(-1,  -  2) -(+2,  +  3)  =(-3,  -  5). 
D 
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It  is  easy  to  see  that 

{x,  y)-{u,  v)={x,  y)-{-{-u,  -v). 
Also 

{x,  y)-{x,  2/)  =  (0,  0). 
Hence  (0,  0)  is  to  be  looked  on  as  the  zero 
ordered  couple.    For  example 

{x,  t/)+(0,  0)=(a;,  y). 

The  pictorial  representation  of  the  addition 
of  ordered  couples  is  surprisingly  easy. 

Fig.  10. 

Let  OP  represent  {x,  y)  so  that  OM=x 
and  PM=y  ;  let  OQ  represent  {xi,  yi)  so  that 
OMi  =xt  and  QMi  =yu  Complete  the  paral- 

lelogram OPRQ  by  the  dotted  lines  PR  and 
QR,  then  the  diagonal  OR  is  the  ordered 
couple  {x-\-xt,  y+yi).    For  draw  PS  parallel 
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to  OX ;  then  evidently  the  triangles  0Q3/i 
and  PRS  are  in  all  respects  equal.  Hence 

MM'=PS=xu  and  RS=QMi;  and  there- fore 

OM'=OM+MM'  =aj  -{-Xu 
RM'=SM'+RS=y-\-yi. 

Thus  OR  represents  the  ordered  couple  as 
required.  This  figure  can  also  be  drawn  with 
OP  and  OQ  in  other  quadrants. 

It  is  at  once  obvious  that  we  have  here 
come  back  to  the  parallelogram  law,  which 
was  mentioned  in  Chapter  VI.,  on  the  laws  of 
motion,  as  applying  to  velocities  and  forces. 
It  will  be  remembered  that,  if  OP  and  OQ 
represent  two  velocities,  a  particle  is  said  to 
be  moving  with  a  velocity  equal  to  the  two 
velocities  added  together  if  it  be  moving  wutli 
the  velocity  OR.  In  other  words  OR  is  said 
to  be  the  resultant  of  the  two  velocities  OP 
and  OQ.  Again  forces  acting  at  a  point  of  a 
body  can  be  represented  by  lines  just  as 
velocities  can  be  ;  and  the  same  parallelogram 
law  holds,  namely,  that  the  resultant  of  the 
two  forces  OP  and  OQ  is  the  force  represented 
by  the  diagonal  OR.  It  follows  that  we  can 
look  on  an  ordered  couple  as  representing  a 
velocity  or  a  force,  and  the  rule  which  we 
have  just  given  for  the  addition  of  ordered 
couples  then  represents  the  fundamental  laws 
of  mechanics  for  the  addition  of  forces  and 
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velocities.  One  of  the  most  fascinating 
characteristics  of  mathematics  is  the  surpris- 

ing way  in  which  the  ideas  and  results  of 
different  parts  of  the  subject  dovetail  into 
each  other.  During  the  discussions  of  this 
and  the  previous  chapter  we  have  been  guided 
merely  by  the  most  abstract  of  pure  mathe- 

matical considerations ;  and  yet  at  the  end 
of  them  we  have  been  led  back  to  the  most 
fundamental  of  all  the  laws  of  nature,  laws 
which  have  to  be  in  the  mind  of  every  engineer 
as  he  designs  an  engine,  and  of  every  naval 
architect  as  he  calculates  the  stability  of  a 
ship.  It  is  no  paradox  to  say  that  in  our 
most  theoretical  moods  we  may  be  nearest  to 
our  most  practical  applications. 



CHAPTER   VIII 

IMAGINARY  NUMBERS  {Continued) 

The  definition  of  the  multiplication  of 
ordered  couples  is  guided  by  exactly  the  same 
considerations  as  is  that  of  their  addition. 

The  interpretation  of  multiplication  must  be 
such  that 

(a)  the  result  is  another  ordered  couple, 
(/3)  the  operation  is  commutative,  so  that 

{x,  y)  x(a?',  y')={x\  y')  x{Xy  y), 
(7)  the  operation  is  associative,  so  that 

{{x,  y)x{x',  y')}  X  (w,  v) 

(B)  must  make  the  result  of  division  unique 
[with  an  exception  for  the  case  of  the  zero 

couple  (0,  0)],  so  that  when  we  seek  to  deter- 
mine the  unknown  couple  {x,  y)  so  as  to 

satisfy  the  equation 

{x,  y)x{a,  b)={c,  d), 

there  is  one  and  only  one  answer,  which  we 
can  represent  by 

{x,  y)={c,  d)4-(a,  6),  or  by  {x,  !/)  =  [^ 101 
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(e)  Furthermore  the  law  involving  both 
addition  and  multiplication,  called  the  dis- 

tributive law,  must  be  satisfied,  namely 

{x,y)x  {(a,  fe)  +  (c,  d) 
=  {{x,  y)  X  {a,  h))  +  {x,  y)  x  (c,  d)]. 

All  these  conditions  (a),  (/3),  (7),  (8),  (e)  can 
be  satisfied  by  an  interpretation  which, 
though  it  looks  complicated  at  first,  is  capable 
of  a  simple  geometrical  interpretation. 

By  definition  we  put 

{X,  y)x{x\  t/')=  {{xx'-yy%  {xy'  +  x'y))  (A) 
This  is  the  definition  of  the  meaning  of  the 

symbol  x  when  it  is  written  between  two 
ordered  couples.  It  follows  evidently  from 
this  definition  that  the  result  of  multiplica- 

tion is  another  ordered  couple,  and  that  the 
value  of  the  right-hand  side  of  equation  {A) 
is  not  altered  by  simultaneously  interchanging 

X  with  x',  and  y  with  y'.  Hence  conditions 
(a)  and  (/S)  are  evidently  satisfied.  The  proof 
of  the  satisfaction  of  (7),  (S),  (e)  is  equally 
easy  when  we  have  given  the  geometrical 
interpretation,  which  we  will  proceed  to  do 
in  a  moment.  But  before  doing  this  it  will 
be  interesting  to  pause  and  see  whether  we 
have  attained  the  object  for  which  all  this 
elaboration  was  initiated. 
We  came  across  equations  of  the  form 

x2=  —3,    to   which    no    solutions    could  be 
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assigned  in  terms  of  positive  and  negative  real 
numbers.  We  then  found  that  all  our  diffi- 

culties would  vanish  if  we  could  interpret  the 

equation  x'^=  —1,  i.e.,  if  we  could  so  define 
VT^  that  VPT)  X  V(-^)=  -1. 
Now  let  us  consider  the  three  special 

ordered  couples  *  (0,0),  (1,0),  and  (0,1). 
We  have  already  proved  that 

(ar,  y)+(0,  0)=(^,  y). 

Furthermore  we  now  have 

(a;,  t/)x(0,  0)=(0,  0). 

Hence  both  for  addition  and  for  multiplica- 
tion the  couple  (0,0)  plays  the  part  of  zero  in 

elementary  arithmetic  and  algebra ;  com- 
pare the  above  equations  with  x^^=x,  and 

X  X  0=0. 

Again  consider  (1,  0) :  this  plays  the  part 
of  1  in  elementary  arithmetic  and  algebra. 
In  these  elementary  sciences  the  special 
characteristic  of  1  is  that  x  xl=x,  for  all 
values  of  x.  Now  by  our  law  of  multiplica- 
tion 

{x,y)x{l,  0)={{x-0),  {y-hO)}  =  {x,y). 

Thus  (1,  0)  is  the  unit  couple. 

*  For  the  future  we  follow  the  oustom  of  omitting  the 
+  sign  wherever  possible,  thus  (1,0)  stands  for  (  +  1,0) 
and(0,I)for(0,  +  l). 



104   INTRODUCTION  TO  MATHEMATICS 

Finally  consider  (0,1) :  this  will  interpret 

for  us  the  symbol  V(—  1).  The  symbol  must 
therefore  possess  the  characteristic  property 

that  A/r-1)  X  V'(-l)=  -1.  Now  by  the law  of  multiplication  for  ordered  couples 

(0,1)  X  (0,1)=  {(0-1),  (0+0)}=  (-1,0). 

But  (1,0)  is  the  unit  couple,  and  (—1,  0) 
is  the  negative  unit  couple  ;  so  that  (0,1)  has 
the  desired  property.  There  are,  however, 
two  roots  of  —1  to  be  provided  for,  namely 
+:  ̂ /{—  1).  Consider  (0,—  1) ;  here  again  re- 

membering that  (—1)2=1,  we  find,  (0,  —1) 
x(0,-l)=(-l,  0). 
Thus  (0,  —1)  is  the  other  square  root  of 

V(— 1).  Accordingly  the  ordered  couples 
(0,1)  and  (0,-1)  are  the  interpretations  of 
^  V(—  1)  in  terms  of  ordered  couples.  But 
which  corresponds  to  which  ?  Does  (0,1) 

correspond  to  +V(—  1)  and  (0,  —1)  to 
-\/(-l),  or  (0,1)  to  -V(-l),and(0,  - 1) 
to  -f  V(  —  1)  ?  The  answer  is  that  it  is  per- 

fectly indifferent  which  symbolism  we  adopt. 
The  ordered  couples  can  be  divided  into 

three  types,  (i)  the  "  complex  imaginary " 
type  {x,y),  in  which  neither  x  nor  y  is  zero ; 

(ii)  the  "real"  type  (a;,0);  (iii)  the  "pure 
imaginary  "  type  (0,?/).  Let  us  consider  the 
relations  of  these  types  to  each  other.  First 

multiply  together  the  "  complex  imaginary  " 
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couple  (a?,y)  and  the  "  real "  couple  (a,0),  we find 

(a,0)x(ar,t^)=(ar,  ay). 

Thus  the  effect  is  merely  to  multiply  each 
term  of  the  couple  {x,y)  by  the  positive  or 
negative  real  number  a. 

Secondly,  multiply  together  the  "  complex 
imaginar}- "  couple  {x,y)  and  the  "  pure 
imaginary  "  couple  (0,6),  we  find 

(0,6)  x{x,y)={-hi/,  bx). 

Here  the  effect  is  more  complicated,  and  is 

best  comprehended  in  the  geometrical  inter- 
pretation to  which  we  proceed  after  noting 

three  j'ct  more  special  cases. 
Thirdly,  we  multiply  the  "  real  "  couple 

(a,0)  with  the  imaginary  (0,6)  and  obtain 

(a,0)x(0,6)=(0,  ab). 

Fourthly,  we  multiply  the  two  "  real  '* 
couples  (a,0)  and  (a',  0)  and  obtain 

(a,0)x(a',0)=(a^',0). 

Fifthly,  we  multiply  the  two  "imaginary 
couples"  (0,6)  and  (0,  6)  and  obtain 

^0,6)x(0,6')=(-66',  0). 

We  now  turn  to  the  geometrical  interpreta- 
tion, beginning  first  with  some  special  cases. 
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Take  the  couples  (1,3)  and  (2,0)  and  consider 
the  equation 

(2,0)  X  (1,3) =(2,6) 

In  the  diagram  (fig.  11)  the  vector  OP  re- 
presents (1,  3),  and  the  vector  ON  represents 

(0,2),  and  the  vector  OQ  represents  (2,6). 
Thus  the  product  (2,0)  x  (1,3)  is  found  geo- 

metrically by  taking  the  length  of  the  vector 
OQ,  to  be  the  product  of  the  lengths  of  the 
vectors  OP  and  ON,  and  (in  this  case)  by 
producing  OP  to  Q  to  be  of  the  required 
length.  Again,  consider  the  product  (0,2)  x 
(1,3),  we  have 

(0,  2)x(l,  S)=(~6,  2) 
The  vector  ON,  corresponds  to  (0,  2)  and 

the  vector  OR  to  (-0,2).     Thus  OR  which 
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represents  the  new  product  is  at  right  angles 
to  OQ  and  of  the  same  length.  Notice  that 
we  have  the  same  law  regulating  the  length 
of  OQ  as  in  the  previous  case,  namely,  that 
its  length  is  the  product  of  the  lengths  of 
the  two  vectors  which  are  multiplied  to- 

gether ;  but  now  that  we  have  ONi  along  the 

"ordinate"  axis  OY,  instead  of  ON  along 
the  "  abscissa "  axis  OX,  the  direction  of 
OP  has  been  turned  through  a  right-angle. 

Hitherto  in  these  examples  of  multiplication 
we  have  looked  on  the  vector  OP  as  modified 
by  the  vectors  ON  and  ON^.  We  shall  get 
a  clue  to  the  general  law  for  the  direction  by 
inverting  the  way  of  thought,  and  by  think- 

ing of  the  vectors  ON  and  ONi  as  modified  by 
the  vector  OP.  The  law  for  the  length  re- 

mains unaffected  ;  the  resultant  length  is  the 
length  of  the  product  of  the  two  vectors. 
The  new  direction  for  the  enlarged  ON  {i.e. 
OQ)  is  found  by  rotating  it  in  the  (anti-clock- 

wise) direction  of  rotation  from  OX  towards 
OY  through  an  angle  equal  to  the  angle  POX  : 
it  is  an  accident  of  this  particular  case  that 
this  rotation  makes  OQ  lie  along  the  line  OP. 
Again  consider  the  product  of  ONi  and  OP ; 
the  new  direction  for  the  enlarged  ONi  {i.e. 
OR)  is  found  by  rotating  ON  in  the  anti- 

clockwise direction  of  rotation  through  an 
angle  equal  to  the  angle  POX,  namely,  the 
angle  NiOR  is  equal  to  the  angle  POX. 
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The  general  rule  for  the  geometrical  repre- 
sentation of  multiplication  can  now  be  enunci- 

ated thus : 

Fig.  12. 

The  product  of  the  two  vectors  OP  and 
OQ  is  a  vector  OR,  whose  length  is  the  pro- 

duct of  the  lengths  of  OP  and  OQ  and  whose 
direction  OR  is  such  that  the  angle  ROX  is 
equal  to  the  sum  of  the  angles  POX  and  QOX. 
Hence  we  can  conceive  the  vector  OP  as 

making  the  vector  OQ  rotate  through  an 
angle  POX  {i.e.  the  angle  i?OQ=the  angle 
POX),  or  the  vector  OQ  as  making  the  vector 
OP  rotate  through  the  angle  QOX  {i.e.  the 
angle  i20P =the  angle  QOX). 
We  do  not  prove  this  general  law,  as  we 
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should  thereby  be  led  into  more  technical 
processes  of  mathematics  than  falls  within  the 

design  of  this  book.  But  now  we  can  im- 
mediately see  that  the  associative  law  [num- 

bered (7)  above]  for  multiplication  is  satisfied. 
Consider  first  the  length  of  the  resultant 
vector;  this  is  got  by  the  ordinary  process 
of  multiplication  for  real  numbers  ;  and  thus 
the  associative  law  holds  for  it. 

Again,  the  direction  of  the  resultant  vector 
is  got  by  the  mere  addition  of  angles,  and  the 
associative  law  holds  for  this  process  also. 

So  much  for  multiplication.  We  have  now 
rapidly  indicated,  by  considering  addition  and 

multiplication,  how  an  algebra  or  "  calculus  " of  vectors  in  one  plane  can  be  constructed, 
which  is  such  that  any  two  vectors  in  the 
plane  can  be  added,  or  subtracted,  and  can 
be  multiplied,  or  divided  one  by  the  other. 
We  have  not  considered  the  technical  de- 

tails of  all  these  processes  because  it  would 
lead  us  too  far  into  mathematical  details ; 

but  we  have  shown  the  general  mode  of  pro- 
cedure. When  we  are  interpreting  our  alge- 

braic symbols  in  this  w^ay,  we  are  said  to  be 
employing  "  imaginary  quantities  "  or  "  com- 

plex quantities."  These  terms  are  mere 
details,  and  we  have  far  too  much  to  think 
about  to  stop  to  enquire  whether  they  are  or 
are  not  very  happily  chosen. 

The  nett  result  of  our  investigations  is  that 
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any  equations  like  cc-\-3=2  or  (a; +3)2=  —2 
can  now  always  be  interpreted  into  terms  of 
vectors,  and  solutions  found  for  them.  In 
seeking  for  such  interpretations  it  is  well  to 
note  that  3  becomes  (3,0),  and  —2  becomes 
(—2,0),  and  x  becomes  the  "unknown" 
couple  {u,  v) :  so  the  two  equations  become 
respectively  (w,  v) +(3,0)  =(2,0),  and  {{u,v) 
+(3,0)}2  =  (-2,0). 
We  have  now  completely  solved  the  initial 

difficulties  which  caught  our  eye  as  soon  as 
we  considered  even  the  elements  of  algebra. 
The  science  as  it  emerges  from  the  solution  is 
much  more  complex  in  ideas  than  that  with 
which  we  started.  We  have,  in  fact,  created 
a  new  and  entirely  different  science,  which 
will  serve  all  the  purposes  for  which  the  old 
science  was  invented  and  many  more  in  addi- 

tion. But,  before  we  can  congratulate  our- 
selves on  this  result  to  our  labours,  we  must 

allay  a  suspicion  which  ought  by  this  time  to 
have  arisen  in  the  mind  of  the  student.  The 
question  which  the  reader  ought  to  be  asking 
himself  is  :  Where  is  all  this  invention  of  new 
interpretations  going  to  end  ?  It  is  true  that 
we  have  succeeded  in  interpreting  algebra  so 
as  always  to  be  able  to  solve  a  quadratic 
equation  like  aj^— 2aj+4=0;  but  there  are 
an  endless  number  of  other  equations,  for 
example,  x^—2x-{-4!=0,  cc^-{-x^+2=0,  and  so 
on  without  limit.    Have  we  got  to  make  a 



IMAGINARY   NUMBERS  111 

new  science  whenever  a  new  equation  ap- 
pears ? 

Now,  i!  this  were  the  case,  the  whole  of  our 
preceding  investigations,  though  to  some 
minds  they  might  be  amusing,  would  in  truth 
be  of  very  trifling  importance.  But  the  great 
fact,  which  has  made  modern  analysis  possible, 
is  that,  by  the  aid  of  this  calculus  of  vectors, 
every  formula  which  arises  can  receive  its 

proper  interpretation  ;  and  the  "  unknown  '* 
quantity  in  every  equation  can  be  shown  to 
indicate  some  vector.  Thus  the  science  is  now 
complete  in  itself  as  far  as  its  fundamental 
ideas  are  concerned.  It  was  receiving  its  final 
form  about  the  same  time  as  when  the  steam 
engine  was  being  perfected,  and  will  remain 
a  great  and  powerful  weapon  for  the  achieve- 

ment of  the  victory  of  thought  over  things 
when  curious  specimens  of  that  machine 
repose  in  museums  in  company  with  the 
helmets  and  breastplates  of  a  slightly  earlier 
epoch. 



CHAPTER   IX 

COORDINATE   GEOMETRY 

The  methods  and  ideas  of  coordinate  geo- 
metry have  already  been  employed  in  the 

previous  chapters.  It  is  now  time  for  us  to 
consider  them  more  closely  for  their  own 
sake  ;  and  in  doing  so  we  shall  strengthen  our 
hold  on  other  ideas  to  which  we  have  attained. 
In  the  present  and  succeeding  chapters  we 
will  go  back  to  the  idea  of  the  positive  and 
negative  real  numbers  and  will  ignore  the 
imaginaries  which  were  introduced  in  the  last 
two  chapters. 

We  have  been  perpetually  using  the  idea 

that,  by  taking  two  axes,  XOX'  and  YOY', 
in  a  plane,  any  point  P  in  that  plane  can  be 
determined  in  position  by  a  pair  of  positive 
or  negative  numbers  x  and  ?/,  where  (cf. 
fig.  13)  a?  is  the  length  OM  and  y  is  the  length 
PM.  This  conception,  simple  as  it  looks,  is 
the  main  idea  of  the  great  subject  of  co- 

ordinate geometry.  Its  discovery  marks  a 
momentous  epoch  in  the  history  of  mathe- 

matical  thought.     It   is    due    (as   has   been 
112 
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already  said)  to  the  philosopher  Descartes, 
and  occurred  to  him  as  an  important  mathe- 

matical method  one  morning  as  he  lay  in  bed. 
Philosophers,  when  they  have  possessed  a 
thorough  knowledge  of  mathematics,  have 
been  amonof  those  who   have  enriched   the 

P 
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Fig.  13. 

science  with  some  of  its  best  ideas.  On  the 
other  hand  it  must  be  said  that,  with  hardly 
an  exception,  all  the  remarks  on  mathematics 
made  by  those  philosophers  who  have  pos- 

sessed but  a  slight  or  hasty  and  late-acquired 
knowledge  of  it  are  entirely  worthless,  being 
either  trivial  or  \sTong.  The  fact  is  a  curious 
one  ;  since  the  ultimate  ideas  of  mathematics 
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seem,  after  all,  to  be  very  simple,  almost 
childishly  so,  and  to  lie  well  within  the 
province  of  philosophical  thought.  Probably 
their  very  simplicity  is  the  cause  of  error  ;  we 
are  not  used  to  think  about  such  simple 
abstract  things,  and  a  long  training  is  neces- 

sary to  secure  even  a  partial  immunity  from 
error  as  soon  as  we  diverge  from  the  beaten 
track  of  thought. 

The  discovery  of  coordinate  geometry,  and 
also  that  of  projective  geometry  about  the 
same  time,  illustrate  another  fact  which  is 
being  continually  verified  in  the  history  of 
knowledge,  namely,  that  some  of  the  greatest 
discoveries  are  to  be  made  among  the  most 
well-known  topics.  By  the  time  that  the 
seventeenth  century  had  arrived,  geometry 
had  already  been  studied  for  over  two  thousand 
years,  even  if  we  date  its  rise  with  the  Greeks. 
Euclid,  taught  in  the  University  of  Alexandria, 
being  born  about  330  B.C. ;  and  he  only 
systematized  and  extended  the  work  of  a  long 
series  of  predecessors,  some  of  them  men  of 
genius.  After  him  generation  after  genera- 

tion of  mathematicians  laboured  at  the  im- 
provement of  the  subject.  Nor  did  the 

subject  suffer  from  that  fatal  bar  to  progress, 
namely,  that  its  study  was  confined  to  a 
narrow  group  of  men  of  similar  origin  and 
outlook — quite  the  contrary  was  the  case ; 
by  the  seventeenth  century  it  had  passed 
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through  the  minds  of  Eg\-ptians  and  Greeks, 
of  Arabs  and  of  Germans.  And  yet,  after  all 

tliis  labour  devoted  to  it  through  so  many- 
ages  by  such  diverse  minds  its  most  important 
secrets  were  yet  to  be  discovered.  No  one 
can  have  studied  even  the  elements  of  ele- 

mentary geometry  without  feeling  the  lack 
of  some  guiding  method.  Every  proposition 
has  to  be  proved  by  a  fresh  display  of  in- 

genuity ;  and  a  science  for  which  this  is  true 
lacks  the  great  requisite  of  scientific  thought, 
namely,  method.  Now  the  especial  point  of 
coordinate  geometry  is  that  for  the  first 
time  it  introduced  method.  The  remote 
deductions  of  a  mathematical  science  are  not 

of  primary'  theoretical  importance.  The 
science  has  not  been  perfected,  until  it  consists 
in  essence  of  the  exhibition  of  great  allied 
methods  by  which  information,  on  any  desired 
topic  which  falls  within  its  scope,  can  easily 
be  obtained.  The  growth  of  a  science  is  not 
primarily  in  bulk,  but  in  ideas  ;  and  the  more 
the  ideas  grow,  the  fewer  are  the  deductions 
which  it  is  worth  while  to  write  down.  Un- 

fortunately, mathematics  is  always  encum- 
bered by  the  repetition  in  text-books  of 

numberless  subsidiary-  propositions,  whose  im- 
portance has  been  lost  by  their  absorption 

into  the  role  of  particular  cases  of  more 
general  truths — and,  as  we  have  already  in- 

sisted, generality  is  the  soul  of  mathematics. 
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Again,  coordinate  geometry  illustrates 
another  feature  of  mathematics  which  has 

already  been  pointed  out,  namely,  that  mathe- 
matical sciences  as  they  develop  dovetail  into 

each  other,  and  share  the  same  ideas  in  com- 
mon. It  is  not  too  much  to  say  that  the 

various  branches  of  mathematics  undergo  a 
perpetual  process  of  generalization,  and  that 
as  they  become  generalized,  they  coalesce. 
Here  again  the  reason  springs  from  the  very 
nature  of  the  science,  its  generality,  that  is 
to  say,  from  the  fact  that  the  science  deals 
with  the  general  truths  which  apply  to  all 
things  in  virtue  of  their  very  existence  as 
things.  In  this  connection  the  interest  of  co* 
ordinate  geometry  lies  in  the  fact  that  it 
relates  together  geometry,  which  started  as 
the  science  of  space,  and  algebra,  which  has 
its  origin  in  the  science  of  number. 

Let  us  now  recall  the  main  ideas  of  the  two 
sciences,  and  then  see  how  they  are  related 

by  Descartes'  method  of  coordinates.  Take 
algebra  in  the  first  place.  We  will  not  trouble 
ourselves  about  the  imaginaries  and  will 
think  merely  of  the  real  numbers  with  posi- 

tive or  negative  signs.  The  fundamental  idea 
is  that  of  any  number,  the  variable  number, 
which  is  denoted  by  a  letter  and  not  by  any 
definite  numeral.  We  then  proceed  to  the 
consideration  of  correlations  between  vari- 

ables.   For  example,  if  x  and  y  are  two  vari- 
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ables,  we  may  conceive  them  as  correlated  by 
the  equations  x-^y=l,  or  by  x+y=l,  or  in 
any  one  of  an  indefinite  number  of  other  ways. 
This  at  once  leads  to  the  application  of  the 
idea  of  algebraic  form.  We  think,  in  fact,  of 
any  correlation  of  some  interesting  type,  thus 

rising  from  the  initial  conception  of  vari- 
able numbers  to  the  secondary  conception  of 

variable  correlations  of  numbers.  Thus  we 

generalize  the  correlation  x+y  =  l,  into  the 
correlation  ax-\-by=c.  Here  a  and  b  and  c, 
being  letters,  stand  for  any  numbers  and  are 
in  fact  themselves  variables.  But  they  are 
the  variables  which  determine  the  variable 

correlation  ;  and  the  correlation,  when  deter- 
mined, correlates  the  variable  numbers  x  and 

y.  Variables,  like  a,  b,  and  c  above,  which 
are  used  to  determine  the  correlation  are 

called  "  constants,"  or  parameters.  The  use 
of  the  term  "  constant  "  in  this  connection 
for  what  is  really  a  variable  may  seem  at  first 
sight  to  be  odd  ;  but  it  is  really  very  natural. 
For  the  mathematical  investigation  is  con- 

cerned with  the  relation  between  the  variables 

X  and  y,  after  a,b,  c  are  supposed  to  have  been 
determined.  So  in  a  sense,  relatively  to  x 

and  y,  the  "  constants  "  a,  b,  and  c  are  con- 
stants. Thus  ax  -rby—c  stands  for  the  general 

example  of  a  certain  algebraic  form,  that  is, 
for  a  variable  correlation  belonging  to  a  certain 
class. 
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Again  we  generalize  cc^-\-y^=l  into  ax^-{- 
by^=c,  or  still  further  into  ax^ -\-2hxy -{-by^ 
=c,  or,  still  further,  into  ax^ -\-hxy -{-by^ -\-2gx 
+2fy^c. 
Here  again  we  are  led  to  variable  correlations 
which  are  indicated  by  their  various  algebraic 
forms. 

Now  let  us  turn  to  geometry.  The  name 
of  the  science  at  once  recalls  to  our  minds 
the  thought  of  figures  and  diagrams  exhibiting 
triangles  and  rectangles  and  squares  and 
circles,  all  in  special  relations  to  each  other. 
The  study  of  the  simple  properties  of  these 
figures  is  the  subject  matter  of  elementary 
geometry,  as  it  is  rightly  presented  to  the 

beginner.  Yet  a  moment's  thought  will  show 
that  this  is  not  the  true  conception  of  the 
subject.  It  may  be  right  for  a  child  to  com- 

mence his  geometrical  reasoning  on  shapes, 
like  triangles  and  squares,  which  he  has  cut 
out  with  scissors.  What,  however,  is  a  tri- 

angle ?  It  is  a  figure  marked  out  and  bounded 
by  three  bits  of  three  straight  lines. 
Now  the  boundary  of  spaces  by  bits  of 

lines  is  a  very  complicated  idea,  and  not  at 
all  one  which  gives  any  hope  of  exhibiting 
the  simple  general  conceptions  which  should 
form  the  bones  of  the  subject.  We  want 
something  more  simple  and  more  general.  It 
is  this  obsession  with  the  wrong  initial  ideas 
— very  natural  and  good  ideas  for  the  creation 
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of  first  thoughts  on  the  subject — which  was 
the  cause  of  the  comparative  sterility  of  the 
study  of  the  science  during  so  many  centuries. 
Coordinate  geometry,  and  Descartes  its  in- 

ventor, must  have  the  credit  of  disclosing  the 
true  simple  objects  for  geometrical  thought. 

In  the  place  of  a  bit  of  a  straight  line,  let 
us  think  of  the  whole  of  a  straight  line 
throughout  its  unending  length  in  both  direc- 

tions. This  is  the  sort  of  general  idea  from 
which  to  start  our  geometrical  investigations. 
The  Greeks  never  seem  to  have  found  any 
use  for  this  conception  which  is  now  funda- 

mental in  all  modern  geometrical  thought. 
Euclid  always  contemplates  a  straight  line  as 
drawn  between  two  definite  points,  and  is 
very  careful  to  mention  when  it  is  to  be  pro- 

duced beyond  this  segment.  He  never  thinks 
of  the  line  as  an  entity  given  once  for  all  as  a 
whole.  This  careful  definition  and  limita- 

tion, so  as  to  exclude  an  infinity  not  immedi- 
ately apparent  to  the  senses,  was  very  charac- 

teristic of  the  Greeks  in  all  their  many 
activities.  It  is  enshrined  in  the  difference 
between  Greek  architecture  and  Gothic  archi- 

tecture, and  between  the  Greek  religion  and 
the  modern  religion.  The  spire  on  a  Gothic 
cathedral  and  the  importance  of  the  un- 
boimded  straight  line  in  modern  geometry 
are  both  emblematic  of  the  transformation  of 
the  modern  world. 
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The  straight  line,  considered  as  a  whole, 
is  accordingly  the  root  idea  from  which 
modern  geometry  starts.  But  then  other 
sorts  of  lines  occur  to  us,  and  we  arrive  at  the 
conception  of  the  complete  curve  which  at 
every  point  of  it  exhibits  some  uniform  char- 

acteristic, just  as  the  straight  line  exhibits 
at  all  points  the  characteristic  of  straight- 
ness.  For  example,  there  is  the  circle  which 
at  all  points  exhibits  the  characteristic  of 
being  at  a  given  distance  from  its  centre,  and 
again  there  is  the  ellipse,  which  is  an  oval 
curve,  such  that  the  sum  of  the  two  distances 
of  any  point  on  it  from  two  fixed  points,  called 
its  foci,  is  constant  for  all  points  on  the  curve. 
It  is  evident  that  a  circle  is  merely  a  particu- 

lar case  of  an  ellipse  when  the  two  foci  are 
superposed  in  the  same  point ;  for  then  the 
sum  of  the  two  distances  is  merely  twice  the 
radius  of  the  circle.  The  ancients  knew  the 
properties  of  the  ellipse  and  the  circle  and,  of 
course,  considered  them  as  wholes.  For  ex- 

ample, Euclid  never  starts  with  mere  seg- 
ments [i.e.,  bits)  of  circles,  which  are  then  pro- 

longed. He  always  considers  the  whole  circle 
as  described.  It  is  unfortunate  that  the 
circle  is  not  the  true  fundamental  line  in 

geometry,  so  that  his  defective  consideration 
of  the  straight  line  might  have  been  of  less 
consequence. 

This  general  idea  of  a  curve  which  at  any 
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point  of  it  exhibits  some  uniform  property  is 

expressed  in  geometry  by  the  term  "  locus." 
A  locus  is  the  curve  (or  surface,  if  we  do  not 
confine  ourselves  to  a  plane)  formed  by  points, 
all  of  which  possess  some  given  property. 
To  every  property  in  relation  to  each  other 
which  points  can  have,  there  corresponds 
some  locus,  which  consists  of  all  the  ix)ints 
possessing  the  property.  In  investigating 
the  properties  of  a  locus  considered  as  a  whole, 
we  consider  any  point  or  points  on  the  locus. 
Thus  in  geometry  we  again  meet  with  the 
fundamental  idea  of  the  variable.  Further- 

more, in  classifying  loci  under  such  headings 
as  straight  lines,  circles,  ellipses,  etc.,  we  again 
find  the  idea  of  form. 

Accordingly,  as  in  algebra  we  are  concerned 
with  variable  numbers,  correlations  between 
variable  numbers,  and  the  classification  of 
correlations  into  types  by  the  idea  of  algebraic 
form  ;  so  in  geometry  we  are  concerned  with 
variable  points,  variable  points  satisfying 
some  condition  so  as  form  to  a  locus,  and  the 
classification  of  loci  into  types  by  the  idea  of 
conditions  of  the  same  form. 

Now,  the  essence  of  coordinate  geometry 
is  the  identification  of  the  algebraic  corre- 

lation with  the  geometrical  locus.  The  point 
on  a  plane  is  represented  in  algebra  by  its 
two  coordinates,  a:  and  ?/,  and  the  condition 
satisfied  by   any   point  on  the  locus   is  re- 
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presented  by  the  corresponding  correlation 
between  x  and  y.  Finally  to  correlations 
expressible  in  some  general  algebraic  form, 
such  as  ax-\-by=Cy  there  correspond  loci  of 
some  general  type,  whose  geometrical  con- 

ditions are  all  of  the  same  form.  We 
have  thus  arrived  at  a  position  where  we 
can  effect  a  complete  interchange  in  ideas 
and  results  between  the  two  sciences.  Each 
science  throws  light  on  the  other,  and  itself 
gains  immeasurably  in  power.  It  is  im- 

possible not  to  feel  stirred  at  the  thought 
of  the  emotions  of  men  at  certain  historic 

moments  of  adventure  and  discovery — 
Columbus  when  he  first  saw  the  Western 
shore,  Pizarro  when  he  stared  at  the  Pacific 
Ocean,  Franklin  when  the  electric  spark  came 
from  the  string  of  his  kite,  Galileo  when  he 
first  turned  his  telescope  to  the  heavens. 
Such  moments  are  also  granted  to  students 
in  the  abstract  regions  of  thought,  and  high 
among  them  must  be  placed  the  morning  when 
Descartes  lay  in  bed  and  invented  the  method 
of  coordinate  geometry. 

When  one  has  once  grasped  the  idea  of  co- 
ordinate geometry,  the  immediate  question 

which  starts  to  the  mind  is,  What  sort  of 

loci  correspond  to  the  well-known  algebraic 
forms  ?  For  example,  the  simplest  among 
the  general  types  of  algebraic  forms  is  ax-\- 
by=c.    The  sort  of  locus  which  corresponds 
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to  this  is  a  straight  line,  and  conversely  to 
every  straight  line  there  corresponds  an  equa- 

tion of  this  form.  It  is  fortunate  that  the 
simplest  among  the  geometrical  loci  should 
correspond  to  the  simplest  among  the  alge- 

braic forms.  Indeed,  it  is  this  general  corre- 
spondence of  geometrical  and  algebraic  sim- 

plicity which  gives  to  the  whole  subject  its 
power.  It  springs  from  the  fact  that  the 
connection  between  geometry  and  algebra  is 
not  casual  and  artificial,  but  deep-seated  and 
essential.  The  equation  which  corresponds 

to  a  locus  is  called  the  equation  of  (or  "  to  ") 
the  locus.  Some  examples  of  equations  of 
straight  lines  will  illustrate  the  subject. 

Fig.  14. 
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Consider  y—x=0 ;  here  the  a,  b,  and  c,  of 
the  general  form  have  been  replaced  by  1,-1, 
and  0  respectively.  This  line  passes  through 

the  "origin,"  O,  in  the  diagram  and  bisects 
the  angle  XOY.  It  is  the  line  L'OL  of  the 
diagram.  The  fact  that  it  passes  through  the 
origin,  O,  is  easily  seen  by  observing  that  the 
equation  is  satisfied  by  putting  a?=0  and 
y=0  simultaneously,  but  0  and  0  are  the  co- 

ordinates of  O.  In  fact  it  is  easy  to  generalize 
and  to  see  by  the  same  method  that  the 
equation  of  any  line  through  the  origin  is  of 
the  form  ax-\-hy=0.  The  locus  of  equation 
y-\-x=Q  also  passes  through  the  origin  and 
bisects  the  angle  X'OY :  it  is  the  line  LiOL\ 
of  the  diagram. 

Consider  y—x=l  :  the  corresponding  locus 
does  not  pass  through  the  origin.  We  there- 

fore seek  where  it  cuts  the  axes.  It  must  cut 
the  axis  of  x  at  some  point  of  coordinates 
X  and  0.  But  putting  y=0  in  the  equation, 
we  get  x=—l;  so  the  coordinates  of  this 
point  (A)  are  —1  and  0.  Similarly  the  point 
(B)  where  the  line  cuts  the  axis  OY  are  0  and 
1.  The  locus  is  the  line  AB  in  the  figure  and 

is  parallel  to  LOL'.  Similarly  y-{-x=l  is  the 
equation  of  line  A^B  of  the  figure ;  and  the 
locus  is  parallel  to  L\OL\.  It  is  easy  to  prove 
the  general  theorem  that  two  lines  represented 
by  equations  of  the  forms  ax-\-hy=0  and 
ax-^by=c  are  parallel. 
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The  group  of  loci  which  we  next  come  upon 
are  sufficiently  important  to  deserve  a  chap- 

ter to  themselves.  But  before  going  on  to 
them  we  will  dwell  a  little  longer  on  the  main 
ideas  of  the  subject. 

The  position  of  any  point  P  is  determined 
by  arbitrarily  choosing  an  origin,  0,  two  axes, 

OX  and  OY,  at  right-angles,  and  then  by 
noting  its  coordinates  x  and  y,  i.e.  OM  and 
PM.  Also,  as  we  have  seen  in  the  last 

chapter,  P  can  be  determined  by  the  "  vec- 
tor "  OP,  where  the  idea  of  the  vector  in- 

cludes a  determinate  direction  as  well  as  a 

determinate  length.  From  an  abstract 
mathematical  point  of  view  the  idea  of  an 
arbitrary  origin  may  appear  artificial  and 
clumsy,  and  similarly  for  the  arbitrarily 
drawn  axes,  OX  and  OY.  But  in  relation  to 
the  application  of  mathematics  to  the  events 
of  the  Universe  we  are  here  symbolizing  with 
direct  simplicity  the  most  fundamental  fact 
respecting  the  outlook  on  the  world  afforded 
to  us  by  our  senses.  We  each  of  us  refer 
our  sensible  perceptions  of  things  to  an  origin 
which  we  call  "  here  "  :  our  location  in  a 
particular  part  of  space  round  which  we 
group  the  whole  Universe  is  the  essential  fact 
of  our  bodily  existence.  We  can  imagine 
beings  who  observe  all  phenomena  in  all  space 
with  an  equal  eye,  unbiassed  in  favour  of  any 
part.     With  us  it  is  otherwise,  a  cat  at  our 
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feet  claims  more  attention  than  an  earth- 
quake at  Cape  Horn,  or  than  the  destruction 

of  a  world  in  the  Milky  Way.  It  is  true  that 
in  making  a  common  stock  of  our  knowledge 
with  our  fellowmen,  we  have  to  waive  some- 

thing of  the  strict  egoism  of  our  own  indi- 

vidual "  here."  We  substitute  "  nearly 
here  "  for  "  here  '* ;  thus  we  measure  miles 
from  the  town  hall  of  the  nearest  town,  or 
from  the  capital  of  the  country.  In  measur- 

ing the  earth,  men  of  science  will  put  the 

origin  at  the  earth's  centre ;  astronomers 
even  rise  to  the  extreme  altruism  of  putting 
their  origin  inside  the  sun.  But,  far  as  this 
last  origin  may  be,  and  even  if  we  go  further 
to  some  convenient  point  amid  the  nearer 
fixed  stars,  yet,  compared  to  the  immeasur- 

able infinities  of  space,  it  remains  true  that 
our  first  procedure  in  exploring  the  Universe 

is  to  fix  upon  an  origin  "  nearly  here." 
Again  the  relation  of  the  coordinates  OM 

and  MP  {i.e.  x  and  y)  to  the  vector  OP  is  an 
instance  of  the  famous  parallelogram  law,  as 
can  easily  be  seen  (c/.  diagram)  by  completing 
the  parallelogram  OMPN.  The  idea  of  the 

"  vector  "  OP,  that  is,  of  a  directed  magni- 
tude, is  the  root-idea  of  physical  science. 

Any  moving  body  has  a  certain  magnitude 
of  velocity  in  a  certain  direction,  that  is  to 
say,  its  velocity  is  a  directed  magnitude,  a 
vector.    Again  a  force  has  a  certain  magni- 
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tude  and  has  a  definite  direction.  Thus, 
when  in  analytical  geometry  the  ideas  of  the 

*'  origin,"  of  "  coordinates,"  and  of  "  vec- 
tors "  are  introduced,  we  are  studying  the 

abstract  conceptions  which  correspond  to  the 
fundamental  facts  of  the  physical  world. 



CHAPTER    X 

CONIC     SECTIONS 

When  the  Greek  geometers  had  exhausted, 
as  they  thought,  the  more  obvious  and  inter- 

esting properties  of  figures  made  up  of 
straight  lines  and  circles,  they  turned  to 
the  study  of  other  curves;  and,  with  their 
almost  infallible  instinct  for  hitting  upon 
things  worth  thinking  about,  they  chiefly 
devoted  themselves  to  conic  sections,  that 
is,  to  the  curves  in  which  planes  would  cut 
the  surfaces  of  circular  cones.  The  man 
who  must  have  the  credit  of  inventing  the 
study  is  Menaechmus  (born  375  B.C.  and 
died  325  B.C.) ;  he  was  a  pupil  of  Plato 
and  one  of  the  tutors  of  Alexander  the 

Great.  Alexander,  by  the  by,  is  a  con- 
spicuous example  of  the  advantages  of  good 

tuition,  for  another  of  his  tutors  was  the 

philosopher  Aristotle.  We  may  suspect  that 
Alexander  found  Menaechmus  rather  a  dull 

teacher,  for  it  is  related  that  he  asked  for  the 
128 
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proofs  to  be  made  shorter.  It  was  to  this 

request  that  Menaechmus  replied :  "  In  the 
country  there  are  private  and  even  royal 
roads,  but  in  geometry  there  is  only  one  road 

for  all."  This  reply  no  doubt  was  true 
enough  in  the  sense  in  which  it  would  have 
been  immediately  understood  by  Alexander. 
But  if  Menaechmus  thought  that  his  proofs 
could  not  be  shortened,  he  was  grievously 
mistaken  ;  and  most  modern  mathematicians 
would  be  horribly  bored,  if  they  were  com- 

pelled to  study  the  Greek  proofs  of  the  pro- 
perties of  conic  sections.  Nothing  Olustrates 

better  the  gain  in  power  which  is  obtained  by 
the  introduction  of  relevant  ideas  into  a 
science  than  to  observe  the  progressive 
shortening  of  proofs  which  accompanies  the 
growth  of  richness  in  idea.  There  is  a  cer- 

tain type  of  mathematician  who  is  always 
rather  impatient  at  delaying  over  the  ideas 
of  a  subject :  he  is  anxious  at  once  to  get  on 

to  the  proofs  of  "'  important  "  problems.  The 
history  of  the  science  is  entirely  against  him. 
There  are  royal  roads  in  science ;  but  those 
who  first  tread  them  are  men  of  genius  and 
not  kings. 

The  way  in  which  conic  sections  first  pre- 
sented themselves  to  mathematicians  was  as 

follows  :  think  of  a  cone  (c/.  fig.  15),  whose 
vertex  (or  point)  is  V,  standing  on  a  circular 
base  STU.  For  example,  a  conical  shade  to 

E 
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an  electric  light  is  often  an  example  of  such  a 

surface.  Now  let  the  "  generating "  lines 
which  pass  through  V  and  lie  on  the  surface 
be  all  produced  backwards;  the  result  is  a 
double  cone,  and  PQR  is  another  circular  cross 
section  on  the  opposite  side  of  V  to  the  cross 
section  STU.  The  axis  of  the  cone  CVC 
passes  through  all  the  centres  of  these  circles 
and  is  perpendicular  to  their  planes,  which 
are  parallel  to  each  other.  In  the  diagram 
the  parts  of  the  curves  which  are  supposed 
to  lie  behind  the  plane  of  the  paper  are  dotted 
lines,  and  the  parts  on  the  plane  or  in  front 
of  it  are  continuous  lines.  Now  suppose  this 
double  cone  is  cut  by  a  plane  not  perpen- 

dicular to  the  axis  CVC,  or  at  least  not 
necessarily  perpendicular  to  it.  Then  three 
cases  can  arise  : — 

(1)  The  plane  may  cut  the  cone  in  a  closed 

oval  curve,  such  as  ABA'B'  which  lies  en- 
tirely on  one  of  the  two  half-cones.  In  this 

case  the  plane  will  not  meet  the  other  half- 
cone  at  all.  Such  a  curve  is  called  an 
ellipse  ;  it  is  an  oval  curve.  A  particular 
case  of  such  a  section  of  the  cone  is  when  the 
plane  is  perpendicular  to  the  axis  CVC,  then 
the  section,  such  as  STU  or  PQR,  is  a  circle. 
Hence  a  circle  is  a  particular  case  of  the 
ellipse. 

(2)  The  plane  may  be  parallel  to  one  of  the 

"  generating  "  lines  of  the  cone,  as  for  ex- 
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ample  the  plane  of  the  curve  I)\A\D\  in  the 
diagram  is  parallel  to  the  generating  line 
VS ;  the  curve  is  still  confined  to  one  of  the 

half-cones,  but  it  is  now  not  a  closed  oval 
curve,  it  goes  on  endlessly  as  long  as  the 

generating  lines  of  the  half-cone  are  produced 
away  from  the  vertex.  Such  a  conic  section 
is  called  a  parabola. 

(3)  The  plane  may  cut  both  the  half -cones, 
so  that  the  complete  curve  consists  of  two 

detached  portions,  or  "  branches "  as  they 
are  called,  this  case  is  illustrated  by  the  two 

branches  G2A2IG2  and  Lo/LoL-^  which  together 
make  up  the  curve.  Neither  branch  is  closed, 
each  of  them  spreading  out  endlessly  as  the 
two  half -cones  are  prolonged  away  from  the 
vertex.  Such  a  conic  section  is  called  a 

hyperbola. 
There  are  accordingly  three  types  of  conic 

sections,  namely,  ellipses,  parabolas,  and 
hyperbolas.  It  is  easy  to  see  that,  in  a  sense, 
parabolas  are  limiting  cases  lying  between 
ellipses  and  hyperbolas.  They  form  a  more 

special  sort  and  have  to  satisfy  a  more  par- 
ticular condition.  These  three  names  are 

apparently  due  to  Apollonius  of  Perga  (born 
about  260  B.C.,  and  died  about  200  B.C.),  who 
wrote  a  systematic  treatise  on  conic  sections 
which  remained  the  standard  work  till  the 

sixteenth  century. 
It  must  at  once  be  apparent  how  awkward 
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and  difficult  the  investigation  of  the  proper- 
ties of  these  curves  must  have  been  to  the 

Greek  geometers.  The  curves  are  plane 
curves,  and  yet  their  investigation  involves 

the  drawing  in  perspective  of  a  solid  figure. 
Thus  in  the  diagram  given  above  we  have 
practically  drawn  no  subsidiary  lines  and  yet 
the  figure   is  sufficiently  complicated.     The 



CONIC    SECTIONS 133 

curves  are  plane  curves,  and  it  seems  obvious 
that  we  should  be  able  to  define  them  without 

going  beyond  the  plane  into  a  solid  figure. 

At  the  same  time,  just  as  in  the  "  solid " 
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definition  there  is   one  uniform  method  of 

definition — ^namely,  the  section  of  a  cone  by 
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a  plane — which  yields  three  cases,  so  in  any 
*'  plane  "  definition  there  also  should  be  one 
uniform  method  of  procedure  which  falls  into 
three  cases.  Their  shapes  when  drawn  on 
their  planes  are  those  of  the  curved  lines  in 
the  three  figures  16,  17,  and  18.  The 

points  A    and   A'  in   the  figures  are  called 
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the  vertices  and  the  line  AA'  the  major  axis. 
It  will  be  noted  that  a  parabola  (c/.  fig.  17) 
has  only  one  vertex.   Apollonius  proved  *  that 

the  ratio  of  PM  to  AM. MA'  (i.e.  -J^^^\ \       AM. MA/ 

remains  constant  both  for  the  ellipse  and  the 
hyperbola  (figs.  16  and  18),  and  that  the  ratio 

*  Cf.  Ball,  loc.  cit.,  for  this  account  of  Apollonius  and Pappus. 
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of  P3/2  to  AM  is  constant  for  the  parabola 
of  fig.  17  ;  and  he  bases  most  of  his  work 
on  this  fact.  We  are  evidently  advancing 
towards  the  desired  uniform  definition  which 

does  not  go  out  of  the  plane  ;  but  have  not 
yet  quite  attained  to  uniformity. 

In  the  diagrams  16  and  18,  two  points,  S 

and  S',  will  be  seen  marked,  and  in  diagram  17 
one  point,  S.  These  are  the  foci  of  the  curves, 
and  are  points  of  the  greatest  importance. 
Apollonius  knew  that  for  an  ellipse  the  sum 

of  SP  and  S'P  {i.e.  SP-\-S'P)  is  constant,  as 
P  moves  on  the  curve  and  is  equal  to  AA'. 
Similarly  for  a  hyperbola  the  difference  S'P  — 
SP  is  constant,  and  equal  to  A  A'  when  P  is 
on  one  branch,  and  the  difference,  SP'  — S'P', 
is  constant  and  equal  to  A  A'  when  P'  is  on 
the  other  branch.  But  no  corresponding 
point  seemed  to  exist  for  the  parabola. 

Finally  500  years  later  the  last  great  Greek 
geometer,  Pappus  of  Alexandria,  discovered 
the  final  secret  which  completed  this  line  of 
thought.  In  the  diagrams  16  and  18  will  be 

seen  two  lines,  XN  and  X'X',  and  in  diagram 
17  the  single  line,  XN.  These  are  the  direc- 

trices of  the  curves,  two  each  for  the  ellipse 
and  the  hyperbola,  and  one  for  the  parabola. 
Each  directrix  corresponds  to  its  nearer  focus. 
The  characteristic  property  of  a  focus,  S,  and 
its  corresponding  directrix,  XN,  for  any  one 
of  the  three  types  of  curve,  is  that  the  ratio 
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the  perpendicular  on  the  directrix  fromP, 
and  P  is  any  point  on  the  curve.  Here  we 
have  finally  found  the  desired  property  of  the 
curves  which  does  not  require  us  to  leave 
the  plane,   and  is   stated  uniformly  for  all 

SP 
three  curves.     For  ellipses,  the  ratio  p^  is  less 

than  1,  for  parabolas  it  is  equal  to  1,  and  for 
hyperbolas  it  is  greater  than  1. 
When  Pappus  had  finished  his  investiga- 

tions, he  must  have  felt  that,  apart  from 
minor  extensions,  the  subject  was  practically 
exhausted ;  and  if  he  could  have  foreseen 
the  history  of  science  for  more  than  a  thousand 
years,  it  would  have  confirmed  his  belief. 
Yet  in  truth  the  really  fruitful  ideas  in  con- 

nection with  this  branch  of  mathematics  had 
not  yet  been  even  touched  on,  and  no  one 
had  guessed  their  supremely  important  ap- 

plications in  nature.  No  more  impressive 
warning  can  be  given  to  those  who  would 
confine  knowledge  and  research  to  what  is 
apparently  useful,  than  the  reflection  that 
conic  sections  were  studied  for  eighteen  hun- 

dred years  merely  as  an  abstract  science, 
without  a  thought  of  any  utility  other  than 
to  satisfy  the  craving  for  knowledge  on  the 
part  of  mathematicians,  and  that  then  at  the 
end  of  this  long  period  of  abstract  study,  they 



CONIC    SECTIONS  137 

were  found  to  be  the  necessary  key  with 
which  to  attain  the  knowledge  of  one  of  the 
most  important  laws  of  nature. 

Meanwhile  the  entirely  distinct  study  of 
astronomy  had  been  going  forward.  The 
great  Greek  astronomer  Ptolemy  (died  168 
A.D.)  published  his  standard  treatise  on  the 

subject  in  the  University  of  Alexandria,  ex- 
plaining the  apparent  motions  among  the 

fixed  stars  of  the  sun  and  planets  by  the  con- 
ception of  the  earth  at  rest  and  the  sun  and 

the  planets  circling  round  it.  During  the 
next  thirteen  hundred  years  the  number  and 

the  accuracy  of  the  astronomical  observa- 
tions increased,  with  the  result  that  the  de- 

scription of  the  motions  of  the  planets  on 

Ptolemy's  hypothesis  had  to  be  made  more 
and  more  complicated.  Copernicus  (born 
1473  A.D.  and  died  1543  a.d.)  pointed  out 
that  the  motions  of  these  heavenly  bodies 
could  be  explained  in  a  simpler  manner  if  the 
sun  were  supposed  to  rest,  and  the  earth  and 
planets  were  conceived  as  moving  round  it. 
However,  he  still  thought  of  these  motions  as 
essentially  circular,  though  modified  by  a  set 
of  small  corrections  arbitrarily  superimposed 
on  the  primary  circular  motions.  So  the 

matter  stood  when  Kepler  was  born  at  Stutt- 
gart in  Germany  in  1571  a.d.  There  were 

two  sciences,  that  of  the  geometry  of  conic 
sections  and  that  of  astronomy,  both  of  which 
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had  been  studied  from  a  remote  antiquity 
without  a  suspicion  of  any  connection  be- 

tween the  two.  Kepler  was  an  astronomer, 
but  he  was  also  an  able  geometer,  and  on  the 
subject  of  conic  sections  had  arrived  at  ideas 
in  advance  of  his  time  He  is  only  one  of 
many  examples  of  the  falsity  of  the  idea  that 
success  in  scientific  research  demands  an  ex- 

clusive absorption  in  one  narrow  line  of  study. 
Novel  ideas  are  more  apt  to  spring  from 
an  unusual  assortment  of  knowledge — not 
necessarily  from  vast  knowledge,  but  from  a 
thorough  conception  of  the  methods  and  ideas 
of  distinct  lines  of  thought.  It  will  be  re- 

membered that  Charles  Darwin  was  helped 
to  arrive  at  his  conception  of  the  law  of 

evolution  by  reading  Malthus'  famous  Essay 
on  Population,  a  work  dealing  with  a  dif- 

ferent subject — at  least,  as  it  was  then 
thought. 

Kepler  enunciated  three  laws  of  planetary 
motion,  the  first  two  in  1609,  and  the  third 
ten  years  later.     They  are  as  follows  : 

(1)  The  orbits  of  the  planets  are  ellipses, 
the  sun  being  in  the  focus. 

(2)  As  a  planet  moves  in  its  orbit,  the 
radius  vector  from  the  sun  to  the  planet 
sweeps  out  equal  areas  in  equal  times. 

(3)  The  squares  of  the  periodic  times  of  the 
several  planets  are  proportional  to  the  cubes 
of  their  major  axes. 
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These  laws  proved  to  be  only  a  stage  to- 
wards a  more  fundamental  development  of 

ideas.  Newton  (born  1642  a.d.  and  died 
1727  A.D.)  conceived  the  idea  of  universal 
gravitation,  namely,  that  any  two  pieces  of 
matter  attract  each  other  with  a  force  pro- 

portional to  the  product  of  their  masses  and 
inversely  proportional  to  the  square  of  their 
distance  from  each  other.  This  sweeping 
general  law,  coupled  with  the  three  laws  of 
motion  which  he  put  into  their  final  general 

shape,  proved  adequate  to  explain  all  astro- 

nomical phenomena,  including  Kepler's  laws, 
and  has  formed  the  basis  of  modern  physics. 
Among  other  things  he  proved  that  comets 
might  move  in  very  elongated  ellipses,  or  in 
parabolas,  or  in  hyperbolas,  which  are  nearly 

parabolas.  The  comets  which  return — such 

as  Halley's  comet — must,  of  course,  move  in 
ellipses.  But  the  essential  step  in  the  proof  of 
the  law  of  gravitation,  and  even  in  the  sug- 

gestion of  its  initial  conception,  was  the  veri- 

fication of  Kepler's  laws  connecting  the 
motions  of  the  planets  with  the  theory  of 
conic  sections. 

From  the  seventeenth  century  onwards  the 
abstract  theory  of  the  curves  has  shared  in 
the  double  renaissance  of  geometry  due  to 
the  introduction  of  coordinate  geometry  and 
of  projective  geometry.  In  projective  geo- 

metry the  fundamental  ideas  cluster  round 
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the  consideration  of  sets  (or  pencils,  as  they 
are  called)  of  lines  passing  through  a  common 

point  (the  vertex  of  the  "  pencil ").  Now 
(c/.  fig,  19)  if  A,  B,  C,  D,  be  any  four  fixed 
points  on  a  conic  section  and  P  be  a  variable 
point  on  the  curve,  the  pencil  of  lines  PA, 

Fig.  19. 

PB,  PC,  and  PD,  has  a  special  property, 
known  as  the  constancy  of  its  cross  ratio.  It 
will  suffice  here  to  say  that  cross  ratio  is  a 
fundamental  idea  in  projective  geometry. 
For  projective  geometry  this  is  really  the  de- 

finition of  the  curves,  or  some  analogous  pro- 
perty which  is  really  equivalent  to  it.     It 
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Till  be  seen  how  far  in  the  course  of  ages  of 
study  we  have  drifted  away  from  the  old 
original  idea  of  the  sections  of  a  circular  cone. 
We  know  now  that  the  Greeks  had  got  hold 
of  a  minor  property  of  comparatively  slight 
importance ;  though  by  some  divine  good 
fortune  the  curves  themselves  deserved  all 

the  attention  which  was  paid  to  them.  This 

unimportance  of  the  "  section  "  idea  is  now 
marked  in  ordinary  mathematical  phrase- 

ology by  dropping  the  word  from  their 
names.  As  often  as  not,  they  are  now 

named  merely  "  conies  "  instead  of  "  conic 
sections." 

Finally,  we  come  back  to  the  point  at 
which  we  left  coordinate  geometry  in  the  last 
chapter.  We  had  asked  what  was  the  type 
of  loci  corresponding  to  the  general  algebraic 

form  ax-\-hy=c,  and  had  found  that  it  was 
the  class  of  straight  lines  in  the  plane.  We 
had  seen  that  every  straight  line  possesses  an 
equation  of  this  form,  and  that  every  equation 
of  this  form  corresponds  to  a  straight  line. 
We  now  wish  to  go  on  to  the  next  general 

type  of  algebraic  forms.  This  is  e\'idently 
to  be  obtained  by  introducing  terms  involv- 

ing X-  and  xy  and  i/2.  Thus  the  new  general 
form  must  be  written — 

ax^+2hxy-\-hy^-\-2gx->tVy+c=^ 

What  does  this  represent  ?     The  answer  is 
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that  it  always  represents  a  conic  section,  and, 
furthermore,  that  the  equation  of  every  conic 
section  can  always  be  put  into  this  shape. 
The  discrimination  of  the  particular  sorts  of 
conies  as  given  by  this  form  of  equation  is 
very  easy.  It  entirely  depends  upon  the  con- 

sideration of  ah—h?,  where  a,  h,  and  h,  are 
the  "constants"  as  written  above.  If  ah  — 
h^  is  a  positive  number,  the  curve  is  an 

ellipse;  if  ab—h'^=0,  the  curve  is  a  para- 
bola :  and  if  ab  —h^  is  a  negative  number,  the 

curve  is  a  hyperbola. 
For  example,  put  a =6=1,  h=g=f=0, 

c=  —  4.  We  then  get  the  equation  x^-\-y^—4! 
=0.  It  is  easy  to  prove  that  this  is  the  equa- 

tion of  a  circle,  whose  centre  is  at  the  origin, 
and  radius  is  2  units  of  length.  Now  ab—h^ 
becomes  1  xl— 0^,  that  is,  1,  and  is  therefore 
positive.  Hence  the  circle  is  a  particular 
case  of  an  ellipse,  as  it  ought  to  be.  Genera- 

lising, the  equation  of  any  circle  can  be 

put  into  the  form  a{x'^-\-y'^)+2gx-\-2fy-\-c=(i. 
Hence  ab—h^  becomes  a^—O,  that  is,  a?-, 
^hich  is  necessarily  positive.  Accordingly 
all  circles  satisfy  the  condition  for  ellipses. 
The  general  form  of  the  equation  of  a  para- 

bola is 

{dx+ey)'^-\-2gx-^2iy+c=0, 

so  that  the  terms  of  the  second  degree,  as 
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they  are  called,  can  be  written  as  a  perfect 
square.     For  squaring  out,  we  get 

d:^z'^-]-2dexy-\-e^y^^2gx^2fij-]-c ; 

so  that  by  comparison  a=d^,  h=d€y  b=e\ 
and  therefore  ab—h^=(Pe^—{d€)^=0.  Hence 
the  necessary  condition  is  automatically  satis- 

fied. The  equation  2xy—4i=0,  where  a=b 
=g=/=0,  h=l,  c=— 4,  represents  a  hyper- 

bola. For  the  condition  ab—h^  becomes 
0—12,  that  is,  —1,  which  is  negative. 

Some  exceptional  cases  are  included  in  the 
general  form  of  the  equation  which  may  not 
.be  immediately  recognized  as  conic  sections. 
By  properly  choosing  the  constants  the  equa- 

tion can  be  made  to  represent  two  straight 
lines.  Now  two  intersecting  straight  lines 
may  fairly  be  said  to  come  under  the  Greek 
idea  of  a  conic  section.  For,  by  referring  to 
the  picture  of  the  double  cone  above,  it  will 
be  seen  that  some  planes  through  the  vertex, 
F,  will  cut  the  cone  in  a  pair  of  straight  lines 
intersecting  at  V.  The  case  of  two  parallel 
straight  lines  can  be  included  by  considering 
a  circular  cylinder  as  a  particular  case  of  a 
cone.  Then  a  plane,  which  cuts  it  and  is 
parallel  to  its  axis,  will  cut  it  in  two  parallel 
straight  lines.  Anyhow,  whether  or  no  the 
ancient  Greek  would  have  allowed  these 

special  cases  to  be  called  conic  sections,  they 
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are  certainly  included  among  the  curves  re- 
presented by  the  general  algebraic  form  oi 

the  second  degree.  This  fact  is  worth  noting  ; 
for  it  is  characteristic  of  modern  mathematics 
to  include  among  general  forms  all  sorts  of 
particular  cases  which  would  formerly  have 
received  special  treatment.  This  is  due  to 
its  pursuit  of  generality. 



CHAPTER    XI 

FUNCTIONS 

The  mathematical  use  of  the  term  function 
has  been  adopted  also  in  common  life.  For 

example,  "  His  temper  is  a  function  of  his 
digestion,"  uses  the  term  exactly  in  this mathematical  sense.  It  means  that  a  rule 
can  be  assigned  which  will  tell  you  what  his 
temper  will  be  when  you  know  how  his 
digestion  is  working.  Thus  the  idea  of  a 

"  function  "  is  simple  enough,  we  only  have 
to  see  how  it  is  applied  in  mathematics  to 
variable  numbers.  Let  us  think  first  of  some 

concrete  examples  :  If  a  train  has  been  travel- 
ling at  the  rate  of  twenty  miles  per  hour,  the 

distance  (s  miles)  gone  after  any  number  of 
hours,  say  t,  is  given  by  5=20  x^;  and  s  is 
called  a  function  of  t.  Also  20  xHs  the  func- 

tion of  t  with  which  s  is  identical.  If  John 
is  one  year  older  than  Thomas,  then,  when 

Thomas  is  at  any  age  of  x  years,  John's  age 
(y  years)  is  given  by  y=x-{-l  ;  and  y  is  a, 
function  of  x,  namely,  is  the  function  x-{-l. 

In  these  examples  t  and  x  are  called  the 
145 
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"  arguments  "  of  the  functions  in  which  they 
appear.  Thus  t  is  the  argument  of  the  func- 

tion 20  xt,  and  x  is  the  argument  of  the  func- 
tion x-\-l.  If  s=20xt,  and  y=x-{-l,  then  s 

and  y  are  called  the  "  values  "  of  the  functions 
20  x^  and  x-\-l  respectively. 

Coming  now  to  the  general  case,  we  can 
define  a  function  in  mathematics  as  a  corre- 

lation between  two  variable  numbers,  called 
respectively  the  argument  and  the  value  of 
the  function,  such  that  whatever  value  be 

assigned  to  the  "  argument  of  the  function  " 
the  value  of  the  "  value  of  the  function  "  is 
definitely  (i.e.  uniquely)  determined.  The 
converse  is  not  necessarily  true,  namely,  that 
when  the  value  of  the  function  is  determined 

the  argument  is  also  uniquely  determined. 

Other  functions  of  the  argument  x  are  y^x^, 
y=2x^-\-3x-{-l,  y=x,  y=log  x,  y=sin  x.  The 
last  two  functions  of  this  group  will  be 
readily  recognizable  by  those  who  understand 
a  little  algebra  and  trigonometry.  It  is  not 

worth  while  to  delay  now  for  their  explana- 
tion as  they  are  merely  quoted  for  the  sake 

of  example. 
Up  to  this  point,  though  we  have  defined 

what  we  mean  by  a  function  in  general,  we 

have  only  mentioned  a  series  of  special  func- 
tions. But  mathematics,  true  to  its  general 

methods  of  procedure,  symbolizes  the  general 
idea  of  any  function.     It  does  this  by  writing 
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F{x),  f{x),  g{x),  ̂   {x),  etc.,  for  any  function  of 
X,  where  the  argument  x  is  placed  in  a  bracket, 
and  some  letter  like  F,  f,  g,  cf),  etc.,  is  prefixed 
to  the  bracket  to  stand  for  the  function. 

This  notation  has  its  d  tects.  Thus  it  obvi- 
ously clashes  with  the  convention  that  the 

single  letters  are  to  represent  variable  num- 
bers ;  since  here  F,  /,  g,  </>,  etc.,  prefixed  to  a 

bracket  stand  for  variable  functions.  It 

would  be  easy  to  give  examples  in  which  we 

can  only  trust  to  common  sense  and  the  con- 
text to  see  what  is  meant.  One  way  of 

ev^ading  the  confusion  is  by  using  Greek 
letters  (e.g.  cf)  as  above)  for  functions  ;  an- 

other way  is  to  keep  to  /  and  F  (the  initial 
letter  of  function)  for  the  functional  letter, 
and,  if  other  variable  functions  have  to  be 
symbolized,  to  take  an  adjacent  letter  like  g. 

With  these  explanations  and  cautions,  we 
\^Tite  y=j{x),  to  denote  that  y  is  the  value  of 
some  undetermined  function  of  the  argument 
X ;  where  f{x)  may  stand  for  anything  such 

as  x-\-\,  x'^—2x-\-\,  sin  x,  log  x,  or  merely  for 
X  itself.  The  essential  point  is  that  when  x 

is  given,  then  y  is  thereby  definitely  deter- 
mined. It  is  important  to  be  quite  clear  as 

to  the  generality  of  this  idea.  Thus  in  y  = 
f{x),  we  may  determine,  if  we  choose,  f{x)  to 
mean  that  when  x  is  an  integer,  f{x)  is  zero, 
and  when  x  has  any  other  value,  f{x)  is  1. 
Accordingly,  putting  y=f{x),  with  this  choice 
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for  the  meaning  of  /,  y  is  either  0  or  1  accord- 
ing as  the  value  of  x  is  integral  or  otherwise. 

Thus  /(1)=0,  /(2)=0,  /(§)  =  !,  /(V2)  =  l,  and 
so  on.  This  choice  for  the  meaning  of  j{x) 
gives  a  perfectly  good  function  of  the  argu- 

ment X  according  to  the  general  definition  of 
a  function. 

A  function,  which  after  all  is  only  a  sort 
of  correlation  between  two  variables,  is  re- 

presented like  other  correlations  by  a  graph, 
that  is  in  effect  by  the  methods  of  coordinate 
geometry.     For  example,  fig.  2  in  Chapter  II. 

1 
is  the  graph  of  the  function  -  where  v  is  the 

argument  and  p  the  value  of  the  function. 
In  this  case  the  graph  is  only  drawn  for 
positive  values  of  v,  which  are  the  only  values 
possessing  any  meaning  for  the  physical  ap- 

plication considered  in  that  chapter.  Again 
in  fig.  14  of  Chapter  IX.  the  whole  length  of 
the  line  AB,  unlimited  in  both  directions,  is 

the  graph  of  the  function  x-\-l,  where  x  is  the 
argument  and  y  is  the  value  of  the  function  ; 
and  in  the  same  figure  the  unlimited  line 
A\B  is  the  graph  of  the  function  \—x,  and 
the  line  LOL'  is  the  graph  of  the  function  x, 
X  being  the  argument  and  y  the  value  of  the 
function. 

These  functions,  which  are  expressed  by 
simple  algebraic  formulae,  are  adapted  for  re- 

presentation by  graphs.     But  for  some  func- 



FUNCTIONS 149 

tions  this  representation  would  be  very 
misleading  without  a  detailed  explanation,  or 
might  even  be  impossible.  Thus,  consider  the 
function  mentioned  above,  which  has  the  value 
1  for  all  values  of  its  argument  x,  except 
those  which  are  integral,  e.g.  except  for  x=0, 
x=l,  x=2,  etc.,  when  it  has  the  value  0. 
Its  appearance  on  a  graph  would  be  that  of 

the  straight  line  ABA'  dra-vvTi  parallel  to  the 

4' 
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Fig.  20. 

axis  XOX'  at  a  distance  from  it  of  1  unit  of 
length.  But  the  points  Ci,  Co,  C3,  C4,  etc., 
corresponding  to  the  values  1,  2,  3,  4,  etc.,  of 

the  argument  x,  are  to  be  omitted,  and  in- 
stead of  them  the  points  B\,  B2,  -S3,  B4,  etc., 

on  the  axis  OX,  are  to  be  taken.  It  is  easy 
to  find  functions  for  which  the  graphical  re- 

presentation is  not  only  inconvenient  but 
impossible.  Functions  which  do  not  lend 
themselves  to  graphs  are  important  in  the 
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higher  mathematics,  but  we  need  not  concern 
ourselves  further  about  them  here. 

The  most  important  division  between  func- 
tions is  that  between  continuous  and  discon- 

tinuous functions.  A  function  is  continuous 
when  its  value  only  alters  gradually  for 
gradual  alterations  of  the  argument,  and  is 
discontinuous  when  it  can  alter  its  value  by 
sudden  jumps.  Thus  the  two  functions  x-{-l 
and  1—x,  whose  graphs  are  depicted  as 
straight  lines  in  fig.  14  of  Chapter  IX.,  are  con- 

tinuous functions,  and  so  is  the  function  -, V 

depicted  in  Chapter  II.,  if  we  only  think  of 
positive  values  of  v.  But  the  function  de- 

picted in  fig.  20  of  this  chapter  is  discontinuous 
since  at  the  values  x=l,  x=2,  etc.,  of  its 
argument,  its  value  gives  sudden  jumps. 

Let  us  think  of  some  examples  of  functions 
presented  to  us  in  nature,  so  as  to  get  into 
our  heads  the  real  bearing  of  continuity  and 
discontinuity.  Consider  a  train  in  its  journey 
along  a  railway  line,  say  from  Euston  Station, 
the  terminus  in  London  of  the  London  and 

North-Western  Railway.  Along  the  line  in 
order  lie  the  stations  of  Bletchley  and  Rugby. 
Let  t  be  the  number  of  hours  which  the  train 
has  been  on  its  journey  from  Euston,  and  s  be 
the  number  of  miles  passed  over.  Then  s  is 
a  function  of  t,  i.e.  is  the  variable  value 
corresponding   to   the   variable   argument   t. 
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If  we  know  the  circumstances  of  the  train's 
run,  we  know  s  as  soon  as  any  special  value 
of  /  is  given.  Now,  miracles  apart,  we  may 
confidently  assume  that  5  is  a  continuous 
function  of  t.  It  is  impossible  to  allow  for 
the  contingency  that  we  can  trace  the  train 
continuously  from  Euston  to  Bletchley,  and 
that  then,  without  any  intervening  time,  how- 

ever short,  it  should  appear  at  Rugby.  The 
idea  is  too  fantastic  to  enter  into  our  calcula- 

tion :  it  contemplates  possibilities  not  to  be 
found  outside  the  Arabian  Nights  ;  and  even 
in  those  tales  sheer  discontinuity  of  motion 
hardly  enters  into  the  imagination,  they  do 
not  dare  to  tax  our  credulity  with  anything 
more  than  very  unusual  speed.  But  unusual 
speed  is  no  contradiction  to  the  great  law  of 
continuity  of  motion  which  appears  to  hold 
in  nature.  Thus  light  moves  at  the  rate  of 
about  190,000  miles  per  second  and  comes  to 
us  from  the  sun  in  seven  or  eight  minutes ; 
but,  in  spite  of  this  speed,  its  distance  travelled 
is  always  a  continuous  function  of  the  time. 

It  is  not  quite  so  obvious  to  us  that  the 
velocity  of  a  body  is  invariably  a  continuous 
function  of  the  time.  Consider  the  train  at 
any  time  t,  it  is  moving  with  some  definite 
velocity,  say  v  miles  per  hour,  where  v  is 
zero  when  the  train  is  at  rest  in  a  station  and 
is  negative  when  the  train  is  backing.  Now 
we  readily  allow  that  v  cannot  change  its 
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value  suddenly  for  a  big,  heavy  train.  The 
train  certainly  cannot  be  running  at  forty 
miles  per  hour  from  11.45  a.m.  up  to  noon, 
and  then  suddenly,  without  any  lapse  of  time, 
commence  running  at  50  miles  per  hour.  We 
at  once  admit  that  the  change  of  velocity 
will  be  a  gradual  process.  But  how  about 
sudden  blows  of  adequate  magnitude  ?  Sup- 

pose two  trains  collide  ;  or,  to  take  smaller 
objects,  suppose  a  man  kicks  a  football.  It 
certainly  appears  to  our  sense  as  though  the 
football  began  suddenly  to  move.  Thus,  in 
the  case  of  velocity  our  senses  do  not  revolt 
at  the  idea  of  its  being  a  discontinuous  func- 

tion of  the  time,  as  they  did  at  the  idea  of  the 
train  being  instantaneously  transported  from 
Bletchley  to  Rugby.  As  a  matter  of  fact, 
if  the  laws  of  motion,  with  their  conception 
of  mass,  are  true,  there  is  no  such  thing  as 
discontinuous  velocity  in  nature.  Anything 
that  appears  to  our  senses  as  discontinuous 
change  of  velocity  must,  according  to  them, 
be  considered  to  be  a  case  of  gradual  change 
which  is  too  quick  to  be  perceptible  to  us. 
It  would  be  rash,  however,  to  rush  into  the 
generalization  that  no  discontinuous  functions 
are  presented  to  us  in  nature.  A  man  who, 
trusting  that  the  mean  height  of  the  land 
above  sea-level  between  London  and  Paris 
was  a  continuous  function  of  the  distance 

from  London,  walked  at   night   on   Shakes- 
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peare's  Cliff  by  Dover  in  contemplation  of 
the  Milky  Way,  would  be  dead  before  he  had 
had  time  to  rearrange  his  ideas  as  to  the 
necessity  of  caution  in  scientific  conclusions. 

It  is  very  easy  to  find  a  discontinuous 
function,  even  if  we  confine  ourselves  to  the 

simplest  of  the  algebraic  formulae.     For  ex- 

ample, take  the  function  of  t/=-,  which  we 

have  already  considered  in  the  form  p=-, 

where  v  was  confined  to  positive  values.     But 



154   INTRODUCTION  TO  MATHEMATICS 

now  let  X  have  any  value,  positive  or  negative. 
The  graph  of  the  function  is  exhibited  in  fig. 
21.  Suppose  X  to  change  continuously  from 
a  large  negative  value  through  a  numerically 
decreasing  set  of  negative  values  up  to  0,  and 
thence  through  the  series  of  increasing  posi- 

tive values.  Accordingly,  if  a  moving  point, 
M,  represents  x  on  XOX',  M  starts  at  the 
extreme  left  of  the  axis  XOX'  and  succes- 

sively moves  through  Mi,  M2,  M3,  M4,,  etc. 
The  corresponding  points  on  the  function  are 
Pi,  P2,  P3,  P4,  etc.  It  is  easy  to  see  that 
there  is  a  point  of  discontinuity  at  x=0,  i.e. 
at  the  origin  0.  For  the  value  of  the  function 
on  the  negative  (left)  side  of  the  origin  be- 

comes endlessly  great,  but  negative,  and  the 
function  reappears  on  the  positive  (right) 
side  as  endlessly  great  but  positive.  Hence, 
however  small  we  take  M2,  M3,  there  is  a 
finite  jump  between  the  values  of  the  func- 

tion at  M2  and  M3.  Indeed,  this  case  has 
the  peculiarity  that  the  smaller  we  take  M2 
Ms,  so  long  as  they  enclose  the  origin,  the 
bigger  is  the  jump  in  value  of  the  function 
between  them.  This  graph  brings  out,  what 
is  also  apparent  in  fig.  20  of  this  chapter,  that 
for  many  functions  the  discontinuities  only 
occur  at  isolated  points,  so  that  by  restrict- 

ing the  values  of  the  argument  we  obtain 
a  continuous  function  for  these  remaining 
values.     Thus  it  is  evident  from  fig.  21  that 
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in  t/  =  -,  if  we  keep  to  positive  values  only 

and  exclude  the  origin,  we  obtain  a  continuous 
function.  Similarly  the  same  function,  if  we 
keep  to  negative  values  only,  excluding  the 
origin,  is  continuous.  Again  the  function 
which  is  graphed  in  fig.  20  is  continuous  be- 

tween B  and  Cx,  and  between  C\  and  C2,  and 
between  C2  and  C3,  and  so  on,  always  in  each 
case  excluding  the  end  points.  It  is,  how- 

ever, easy  to  find  functions  such  that  their 
discontinuities  occur  at  all  points.  For 
example,  consider  a  function  j{x),  such  that 
when  X  is  any  fractional  number  f{x)=l,  and 
when  X  is  any  incommensurable  number 

-f{x)=2.  This  function  is  discontinuous  at  all 
points. 

Finally,  we  will  look  a  little  more  closely 
at  the  definition  of  continuity  given  above. 
We  have  said  that  a  function  is  continuous 

when  its  value  only  alters  gradually  for 
gradual  alterations  of  the  argument,  and  is 
discontinuous  when  it  can  alter  its  value  by 
sudden  jumps.  This  is  exactly  the  sort  of 
definition  which  satisfied  our  mathematical 

forefathers  and  no  longer  satisfies  modern 
mathematicians.  It  is  worth  while  to  spend 
some  time  over  it ;  for  when  we  understand 
the  modern  objections  to  it,  we  shall  have 
gone  a  long  way  towards  the  understanding 
of  the  spirit  of  modern  mathematics.     The 
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whole  difference  between  the  older  and  the 
newer  mathematics  lies  in  the  fact  that  vague 

half -metaphorical  terms  like  "  gradually  " 
are  no  longer  tolerated  in  its  exact  statements. 
Modern  mathematics  will  only  admit  state- 

ments and  definitions  and  arguments  which 
exclusively  employ  the  few  simple  ideas  about 
number  and  magnitude  and  variables  on 
which  the  science  is  founded.  Of  two  num- 

bers one  can  be  greater  or  less  than  the 
other  ;  and  one  can  be  such  and  such  a  multi- 

ple of  the  other  ;  but  there  is  no  relation  of 

"  graduality "  between  two  numbers,  and hence  the  term  is  inadmissible.  Now  this 
may  seem  at  first  sight  to  be  great  pedantry. 
To  this  charge  there  are  two  answers.  In 
the  first  place,  during  the  first  half  of  the 
nineteenth  century  it  was  found  by  some 
great  mathematicians,  especially  Abel  in 
Sweden,  and  Weierstrass  in  Germany,  that 
large  parts  of  mathematics  as  enunciated  in 
the  old  happy-go-lucky  manner  were  simply 
wrong.  Macaulay  in  his  essay  oh  Bacon 
contrasts  the  certainty  of  mathematics  with 
the  uncertainty  of  philosophy  ;  and  by  way 

of  a  rhetorical  example  he  says,  "  There  has 
been  no  reaction  against  Taylor's  theorem." 
He  could  not  have  chosen  a  worse  example. 
For,  without  having  made  an  examination  of 
English  text-books  on  mathematics  contem- 

porary with  the  publication  of  this  essay,  the 
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assumption  is  a  fairly  safe  one  that  Taylor's 
theorem  was  enunciated  and  proved  wrongly 
in  every  one  of  them.  Accordingly,  the 
anxious  precision  of  modern  mathematics  is 

necessarj'^  for  accuracy.  In  the  second  place 
it  is  necessary  for  research.  It  makes  for 
clearness  of  thought,  and  thence  for  boldness 
of  thought  and  for  fertility  in  trying  new 
combinations  of  ideas.  When  the  initial 
statements  are  vague  and  slipshod,  at  every 
subsequent  stage  of  thought,  common  sense 
has  to  step  in  to  limit  applications  and  to 
explain  meanings.  Now  in  creative  thought 
common  sense  is  a  bad  master.  Its  sole 
criterion  for  judgment  is  that  the  new  ideas 
shall  look  like  the  old  ones.  In  other  words 
it  can  only  act  by  suppressing  originality. 

In  working  our  way  towards  the  precise 
definition  of  continuity  (as  applied  to  func- 

tions) let  us  consider  more  closely  the  state- 
ment that  there  is  no  relation  of  "  graduality  " 

between  numbers.  It  may  be  asked,  Cannot 
one  number  be  only  slightly  greater  than 
another  number,  or  in  other  words,  cannot 
the  difference  between  the  two  numbers  be 

small  ?  The  whole  point  is  that  in  the  ab- 
stract, apart  from  some  arbitrarily  assumed 

application,  there  is  no  such  thing  as  a  great 
or  a  small  number.  A  million  miles  is  a 
small  number  of  miles  for  an  astronomer 
investigating  the  fixed  stars,  but  a  million 
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pounds  is  a  large  yearly  income.  Again,  one- 
quarter  is  a  large  fraction  of  one's  income  to 
give  away  in  charity,  but  is  a  small  fraction 
of  it  to  retain  for  private  use.  Examples  can 
be  accumulated  indefinitely  to  show  that 
great  or  small  in  any  absolute  sense  have  no 
abstract  application  to  numbers.  We  can 
say  of  two  numbers  that  one  is  greater  or 
smaller  than  another,  but  not  without  speci- 

fication of  particular  circumstances  that  any 
one  number  is  great  or  small.  Our  task 
therefore  is  to  define  continuity  without  any 

mention  of  a  "  small  "  or  "  gradual  "  change in  value  of  the  function. 
In  order  to  do  this  we  will  give  names  to 

some  ideas,  which  will  also  be  useful  when 
we  come  to  consider  limits  and  the  differential 
calculus. 

An  "  interval "  of  values  of  the  argument 
a;  of  a  function  f{x)  is  all  the  values  lying 
between  some  two  values  of  the  argument. 
For  example,  the  interval  between  x=l  and 
x=2  consists  of  all  the  values  which  x  can 
take  lying  between  1  and  2,  i.e.  it  consists  of 
all  the  real  numbers  between  1  and  2.  But 
the  bounding  numbers  of  an  interval  need 
not  be  integers.  An  interval  of  values  of  the 
argument  contains  a  number  a,  when  a  is  a 
member  of  the  interval.  For  example,  the 
interval  between  1  and  2  contains  f ,  |,  I,  and 
so  on. 



FUNCTIONS  159 

A  set  of  numbers  approximates  to  a  num- 
ber a  within  a  standard  k,  when  the  numerical 

difference  between  a  and  every  number  of  the 
:t  is  less  than  k.  Here  k  is  the  "  standard 

ijf  approximation."  Thus  the  set  of  num- 
bers 3,  4,  6,  8,  approximates  to  the  number 

5  within  the  standard  4.  In  this  case  the 
standard  4  is  not  the  smallest  which  could 
have  been  chosen,  the  set  also  approximates 

to  5  within  any  of  the  standards  3-1  or  3-01 
or  3-001.  Again,  the  numbers,  3-1,  3-141, 
3-1415,  3-14159  approximate  to  3-13102  with- 

in the  standard  -032,  and  also  within  the 
smaller  standard  -03103. 

These  two  ideas  of  an  interval  and  of 
approximation  to  a  number  within  a  standard 
are  easy  enough  ;  their  only  difficulty  is  that 
they  look  rather  trivial.  But  when  combined 

with  the  next  idea,  that  of  the  "  neighbour- 
hood "  of  a  number,  they  form  the  foundation 

of  modern  mathematical  reasoning.  What 
do  we  mean  by  saying  that  something  is  true 
for  a  function  f(x)  in  the  neighbourhood  of 
the  value  a  of  argument  x  ̂   It  is  this  funda- 

mental notion  which  we  have  now  got  to 
make  precise. 

The  values  of  a  function  f{x)  are  said  to 

possess  a  characteristic  in  the  "  neighbour- 
hood of  a  "  when  some  interval  can  be  found, 

which  (i)  contains  the  number  a  not  as  an 

end-point,  and  (ii)  is  such  that  every  value 
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of  the  function  for  arguments,  other  than  a, 
lying  within  that  interval  possesses  the  char- 

acteristic. The  value  f{a)  of  the  function  for 
the  argument  a  may  or  may  not  possess  the 
characteristic.  Nothing  is  decided  on  this 
point  by  statements  about  the  neighbourhood 
of  a. 

For  example,  suppose  we  take  the  particu- 
lar function  x^.  Now  in  the  neighbourhood  of 

2,  the  values  of  x^  are  less  than  5.  For  we  can 
find  an  interval,  e.g.  from  1  to  2*1,  which 
(i)  contains  2  not  as  an  end-point,  and  (ii)  is 
such  that,  for  values  of  cc  lying  within  it,  x^ 
is  less  than  5. 
Now,  combining  the  preceding  ideas  we 

know  what  is  meant  by  saying  that  in  the 
neighbourhood  of  a  the  function  f{x)  approxi- 

mates to  c  within  the  standard  k.  It  means 
that  some  iaterval  can  be  found  which  (i) 
includes  a  not  as  an  end-point,  and  (ii)  is  such 
that  all  values  of  f{x),  where  x  lies  in  the  inter- 

val and  is  nota,  differ  f romc  by  less  than  k.  For 
example,  in  the  neighbourhood  of  2,  the  func- 

tion -y'x  approximates  to  1-41425  within  the 
standard  '0001.  This  is  true  because  the 

square  root  of  1*99996164  is  1-4142  and  the 
square  root  of  2*00024449  is  1*4143;  hence 
for  values  of  x  lying  in  the  interval 
1*99996164  to  2*00024449,  which  contains  2 
not  as  an  end-point,  the  values  of  the  function 

^x  all  lie  between  1*4142  and  1*4143,  and 
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they  therefore  all  differ  from  1 '41425  by  less 
than  -0001.  In  this  case  we  can,  if  we  like, 
fix  a  smaller  standard  of  approximation, 

namely  -000051  or  -0000501.  Again,  to  take 
another  example,  in  the  neighbourhood  of  2 
the  function  x^  approximates  to  4  within  the 
standard  -5.  For  (1-9)2=3-61  and  (2  1)2  = 
4-41,  and  thus  the  required  interval  1-9  to 
2*1,  containing  2  not  as  an  end-point,  has 
been  found.  This  example  brings  out  the 
fact  that  statements  about  a  function  j{x)  in 
the  neighbourhood  of  a  number  a  are  distinct 
from  statements  about  the  value  of  j{x)  when 
X  —a.  The  production  of  an  interval,  through- 

out which  the  statement  is  true,  is  required. 
Thus  the  mere  fact  that  22=4  does  not  by 
itself  justify  us  in  saying  that  in  the  neigh- 
bourhood  of  2  the  function  x^  is  equal  to  4. 
This  statement  would  be  untrue,  because  no 
interval  can  be  produced  with  the  required 
property.  Also,  the  fact  that  22=4  does  not 
by  itself  justify  us  in  saying  that  in  the 
neighbourhood  of  2  the  function  x~  approxi- 

mates to  4  within  the  standard  -5  ;  although 
as  a  matter  of  fact,  the  statement  has  just 
been  proved  to  be  true. 

If  we  understand  the  preceding  ideas,  we 
understand  the  foundations  of  modern 
mathematics.  We  shall  recur  to  analogous 
ideas  in  the  chapter  on  Series,  and  again 
in  the  chapter  on  the  Differential   Calculus. 
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Meanwhile,  we  are  now  prepared  to  define 

"  continuous  functions."  A  function  f{x) 
is  "  continuous  "  at  a  value  a  of  its  argu- 

ment, when  in  the  neighbourhood  of  a 
its  values  approximate  to  f{a)  {i.e.  to  its 

value  at  a)  within  every  standard  of  ap- 
proximation. 

This  means  that,  whatever  standard  k  be 

chosen,  in  the  neighbourhood  of  a  f{x)  ap- 
proximates to  f{a)  within  the  standard  k. 

For  example,  x^  is  continuous  at  the  value  2 
of  its  argument,  x,  because  however  k  be 
chosen  we  can  always  find  an  interval,  which 

(i)  contains  2  not  as  an  end-point,  and  (ii)  is 
such  that  the  values  of  x~  for  arguments  lying 
within  it  approximate  to  4  {i.e.  2^)  within 
the  standard  k.  Thus,  suppose  we  choose 

the  standard  -1  ;  now  (1-999)2 =3-996001, 
and  (2-01)2  =4-0401,  ̂ nd  both  these  numbers 
differ  from  4  by  less  than  -1.  Hence,  within 
the  interval  1-999  to  2-01  the  values  of  x^ 

approximate  to  4  within  the  standard  '1. 
Similarly  an  interval  can  be  produced  for  any 
other  standard  which  we  like  to  try. 

Take  the  example  of  the  railway  train.  Its 
velocity  is  continuous  as  it  passes  the  signal 
box,  if  whatever  velocity  you  like  to  assign 

(say  one-millionth  of  a  mile  per  hour)  an  in- 
terval of  time  can  be  found  extending  before 

and  after  the  instant  of  passing,  such  that  at 

all    instants    within    it    the   train's    velocitv 
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differs  from  that  with  which  the  train  passed 
the  box  by  less  than  one-millionth  of  a  mile 
per  hour  ;  and  the  same  is  true  whatever 
other  velocity  be  mentioned  in  the  place  of 
one-millionth  of  a  mile  per  hour. 



CHAPTER   XII 

PERIODICITY  IN   NATURE 

The  whole  life  of  Nature  is  dominated  by 
the  existence  of  periodic  events,  that  is,  by 
the  existence  of  successive  events  so  analogous 
to  each  other  that,  without  any  straining  of 
language,  they  may  be  termed  recurrences  of 
the  same  event.  The  rotation  of  the  earth 
produces  the  successive  days.  It  is  true  that 
each  day  is  different  from  the  preceding  days, 
however  abstractly  we  define  the  meaning  of 
a  day,  so  as  to  exclude  casual  phenomena. 
But  with  a  sufficiently  abstract  definition  of 
a  day,  the  distinction  in  properties  between 
two  days  becomes  faint  and  remote  from 
practical  interest ;  and  each  day  may  then 
be  conceived  as  a  recurrence  of  the  phenome- 

non of  one  rotation  of  the  earth.  Again  the 
path  of  the  earth  round  the  sun  leads  to  the 
yearly  recurrence  of  the  seasons,  and  imposes 
another  periodicity  on  all  the  operations  of 
nature.  Another  less  fundamental  perio- 

dicity is  provided  by  the  phases  of  the  moon. 
In  modern  civilized  life,  with  its  artificiai  light, 
these  phases  are  of  slight  importance,  but  in 

164 
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ancient  times,  in  climates  where  the  days  are 
burning  and  the  skies  clear,  human  life  was 
apparently  largelyinfluencedby  the  existenceof 
moonlight.  Accordingly  our  divisions  into 
weeks  and  months,  with  their  religious  associa- 

tions, have  spread  over  the  European  races  from 
Syria  and  Mesopotamia,  though  independent 

observances  following  the  moon's  phases  are 
found  amongst  most  nations.  It  is,  however, 
through  the  tides,  and  not  through  its  phases 

of  light  and  darkness,  that  the  moon's  perio- 
dicity has  chiefly  influenced  the  history  of 

the  earth. 
Our  bodily  life  is  essentially  periodic. 

It  is  dominated  by  the  beatings  of  the 
heart,  and  the  recurrence  of  breathing. 
The  presupposition  of  periodicity  is  indeed 
fundamental  to  our  very  conception  of  life. 
We  cannot  imagine  a  course  of  nature  in 
which,  as  events  progressed,  we  should  be 

unable  to  say  :  "  This  has  happened  before.'* 
The  whole  conception  of  experience  as  a  guide 
to  conduct  would  be  absent.  Men  would 
always  find  themselves  in  new  situations 
possessing  no  substratum  of  identity  with 
anything  in  past  history.  The  very  means  of 
measuring  time  as  a  quantity  would  be  absent. 
Events  might  still  be  recognized  as  occurring 
in  a  series,  so  that  some  were  earlier  and 
others  later.  But  we  now  go  beyond  this 
bare  recognition.     We  can  not  only  say  that 
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three  events,  A,  B,  C,  occurred  in  this  order, 
so  that  A  came  before  B,  and  B  before  C ; 
but  also  we  can  say  that  the  length  of  time 
between  the  occurrences  of  A  and  B  was 
twice  as  long  as  that  between  B  and  C.  Now, 
quantity  of  time  is  essentially  dependent  on 
observing  the  number  of  natural  recurrences 
which  have  intervened.  We  may  say 
that  the  length  of  time  between  A  and  B  was 
so  many  days,  or  so  many  months,  or  so 
many  years,  according  to  the  type  of  recur- 

rence to  which  we  wish  to  appeal.  Indeed, 
at  the  beginning  of  civilization,  these  three 
modes  of  measuring  time  were  really  distinct. 
It  has  been  one  of  the  first  tasks  of  science 

among  civilized  or  semi-civilized  nations,  to 
fuse  them  into  one  coherent  measure.  The 
full  extent  of  this  task  must  be  grasped.  It 
is  necessary  to  determine,  not  merely  what 

number  of  days  {e.g.  365-25  .  .  .)  go  to  some 
one  year,  but  also  previously  to  determine  that 
the  same  number  of  days  do  go  to  the  suc- 

cessive years.  We  can  imagine  a  world  in 
which  periodicities  exist,  but  such  that  no  two 
are  coherent.  In  some  years  there  might  be 
200  days  and  in  others  350.  The  determina- 

tion of  the  broad  general  consistency  of  the 
more  important  periodicities  was  the  first  step 
in  natural  science.  This  consistency  arises 
from  no  abstract  intuitive  law  of  thought ; 
it    is    merely   an    observed   fact    of     nature 
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guaranteed  by  experience.  Indeed,  so  far  is 
it  from  being  a  necessary  law,  that  it  is  not 
even  exactly  true  There  are  divergencies  in 
every  case.  For  some  instances  these  diver- 

gencies are  easily  observed  and  are  therefore 

immediately  apparent.  In  other  cases  it  re- 
quires the  most  refined  observations  and 

astronomical  accuracy  to  make  them  appar- 
ent. Broadly  speaking,  all  recurrences  de- 

pending on  living  beings,  such  as  the  beatings 
of  the  heart,  are  subject  in  comparison  with 
other  recurrences  to  rapid  variations.  The 

great  stable  obvious  recurrences — stable  in 
the  sense  of  mutually  agreeing  with  great 

accuracy — are  those  depending  on  the  motion 
of  the  earth  as  a  whole,  and  on  similar  motions 
of  the  heavenly  bodies. 
We  therefore  assume  that  these  astronomi- 

cal recurrences  mark  out  equal  intervals  of 
time.  But  how  are  we  to  deal  with  their 

discrepancies  which  the  refined  observations 
of  astronomy  detect  ?  Apparently  we  are 
reduced  to  the  arbitrary  assumption  that  one 
or  other  of  these  sets  of  phenomena  marks  out 

equal  times — e.g.  that  either  all  days  are  of 
equal  length,  or  that  all  years  are  of  equal 
length.  This  is  not  so :  some  assumptions 
must  be  made,  but  the  assumption  which 
underlies  the  whole  procedure  of  the  astrono- 

mers in  determining  the  measure  of  tim.e  is 
that  the  laws  of  motion  are  exactly  verified. 
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Before  explaining  how  this  is  done,  it  is  in- 
teresting to  observe  that  this  relegation  of 

the  determination  of  the  measure  of  time  to 
the  astronomers  arises  (as  has  been  said)  from 
the  stable  consistency  of  the  recurrences  with 
which  they  deal.  If  such  a  superior  con- 

sistency had  been  noted  among  the  recur- 
rences characteristic  of  the  human  body,  we 

should  naturally  have  looked  to  the  doctors 
of  medicine  for  the  regulation  of  our  clocks. 

In  considering  how  the  laws  of  motion 
come  into  the  matter,  note  that  two  incon- 

sistent modes  of  measuring  time  will  yield 
different  variations  of  velocity  to  the  same 
body.  For  example,  suppose  we  define  an 
hour  as  one  twenty-fourth  of  a  day,  and  take 
the  case  of  a  train  running  uniformly  for  two 
hours  at  the  rate  of  twenty  miles  per  hour. 
Now  take  a  grossly  inconsistent  measure  of 
time,  and  suppose  that  it  makes  the  first  hour 
to  be  twice  as  long  as  the  second  hour.  Then, 
according  to  this  other  measure  of  duration, 
the  time  of  the  train's  run  is  divided  into 
two  parts,  during  each  of  which  it  has  tra- 

versed the  same  distance,  namely,  twenty 
miles ;  but  the  duration  of  the  first  part  is 
twice  as  long  as  that  of  the  second  part. 
Hence  the  velocity  of  the  train  has  not  been 
uniform,  and  on  the  average  the  velocity 
during  the  second  period  is  twice  that  during 
the  first  period.     Thus  the  question  as  to 
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whether  the  train  has  been  running  uniformly 
or  not  entirely  depends  on  the  standard  of 
time  which  we  adopt. 

Now,  for  all  ordinary  purposes  of  life  on  the 
earth,  the  various  astronomical  recurrences 
may  be  looked  on  as  absolutely  consistent ; 
and,  furthermore  assuming  their  consistency, 
and  thereby  assuming  the  velocities  and 
changes  of  velocities  possessed  by  bodies,  we 
find  that  the  laws  of  motion,  which  have 
been  considered  above,  are  almost  exactly 
verified.  But  only  almost  exactly  when  we 
come  to  some  of  the  astronomical  phenomena. 
We  find,  however,  that  by  assuming  slightly 
different  velocities  for  the  rotations  and 
motions  of  the  planets  and  stars,  the  laws 
would  be  exactly  verified.  This  assumption 
is  then  made  ;  and  we  have,  in  fact  thereby, 
adopted  a  measure  of  time,  which  is  indeed 
defined  by  reference  to  the  astronomical 
phenomena,  but  not  so  as  to  be  consistent 
with  the  uniformity  of  any  one  of  them.  But 
the  broad  fact  remains  that  the  uniform  flow 
of  time  on  which  so  much  is  based,  is  itself 
dependent  on  the  observation  of  periodic 
events. 

Even  phenomena,  which  on  the  surface 
seem  casual  and  exceptional,  or,  on  the  other 
hand,  maintain  themselves  with  a  uniform 
persistency,  may  be  due  to  the  remote  influ- 

ence of  periodicity.     Take  for  example,  the 
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principle  of  resonance.  Resonance  arises 
when  two  sets  of  connected  circumstances 

have  the  same  periodicities.  It  is  a  dynami- 
cal law  that  the  small  vibrations  of  all  bodies 

when  left  to  themselves  take  place  in  definite 
times  characteristic  of  the  body.  Thus  a 
pendulum  with  a  small  swing  always  vibrates 
in  some  definite  time,  characteristic  of  its  shape 
and  distribution  of  weight  and  length.  A  more 
complicated  body  may  have  many  ways  of 
vibrating  ;  but  each  of  its  modes  of  vibration 

will  have  its  own  peculiar  "  period."  Those 
periods  of  vibration  of  a  body  are  called  its 

"  free  "  periods.  Thus  a  pendulum  has  but 
one  period  of  vibration,  while  a  suspension 
bridge  will  have  many.  We  get  a  musical 
instrument,  like  a  violin  string,  when  the 
periods  of  vibration  are  all  simple  submultiples 
of  the  longest ;  i.e.  if  t  seconds  be  the  longest 
period,  the  others  are  ̂ t,  ̂t,  and  so  on,  where 
any  of  these  smaller  periods  may  be  absent. 
Now,  suppose  we  excite  the  vibrations  of  a 
body  by  a  cause  which  is  itself  periodic; 
then,  if  the  period  of  the  cause  is  very  nearly 
that  of  one  of  the  periods  of  the  body,  that 
mode  of  vibration  of  the  body  is  very  violently 
excited  ;  even  although  the  magnitude  of  the 
exciting  cause  is  small.  This  phenomenon  is 

called  "  resonance."  The  general  reason  is 
easy  to  understand.  Any  one  wanting  to 

upset  a  rocking  stone  will  push  "  in  tune  " 
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with  the  oscillations  of  the  stone,  so  as  always 
to  secure  a  favourable  moment  for  a  push. 
If  the  pushes  are  out  of  tune,  some  increase 
the  oscillations,  but  others  check  them.  But 
when  they  are  in  tune,  after  a  time  all  the 

pushes  are  favourable.  The  word  "  reson- 
ance "  comes  from  considerations  of  sound  : 

but  the  phenomenon  extends  far  beyond  the 
region  of  sound.  The  laws  of  absorption  and 

emission  of  light  depend  on  it,  the  "  tuning  " 
of  receivers  for  wireless  telegraphy,  the  com- 

parative importance  of  the  influences  of 

planets  on  each  other's  motion,  the  danger 
to  a  suspension  bridge  as  troops  march  over 
it  in  step,  and  the  excessive  vibration  of  some 

ships  under  the  rhj'thmical  beat  of  their 
machinery  at  certain  speeds.  This  coinci- 

dence of  periodicities  may  produce  steady 

phenomena  when  there  is  a  constant  associ- 
ation of  the  two  periodic  events,  or  it  may 

produce  violent  and  sudden  outbursts  when 
the  association  is  fortuitous  and  temporary. 

Again,  the  characteristic  and  constant 
periods  of  vibration  mentioned  above  are 
the  underlying  causes  of  what  appear  to 
us  as  steady  excitements  of  our  senses.  We 
work  for  hours  in  a  steady  light,  or  we  listen 
to  a  steady  unvarying  sound.  But,  if  modern 
science  be  correct,  this  steadiness  has  no 
counterpart  in  nature.  The  steady  light  is 
due  to  the  impact  on  the  eye  of  a  countless 
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number  of  periodic  waves  in  a  vibrating  ether, 
and  the  steady  sound  to  similar  waves  in  a 
vibrating  air.  It  is  not  our  purpose  here  to 
explain  the  theory  of  light  or  the  theory  of 
sound.  We  have  said  enough  to  make  it 
evident  that  one  of  the  first  steps  necessary 
to  make  mathematics  a  fit  instrument  for  the 
investigation  of  Nature  is  that  it  should  be 
able  to  express  the  essential  periodicity  of 
things.  If  we  have  grasped  this,  we  can 
understand  the  importance  of  the  mathe- 

matical conceptions  which  we  have  next  to 
consider,  namely,  periodic  functions. 



CHAPTER    XIII 

TRIGONOMETRY 

Trigonometry  did  not  take  its  rise  from 
the  general  consideration  of  the  periodicity  of 
nature.  In  this  respect  its  history  is  analo- 

gous to  that  of  conic  sections,  which  also  had 
their  origin  in  very  particular  ideas.  Indeed, 
a  comparison  of  the  histories  of  the  two 
sciences  yields  some  very  instructive  analogies 
and  contrasts.  Trigonometry,  like  conic  sec- 

tions, had  its  origin  among  the  Greeks.  Its 
inventor  was  Hipparchus  (born  about  160 
B.C.),  a  Greek  astronomer,  who  made  his 
observations  at  Rhodes.  His  services  to 
astronomy  were  very  great,  and  it  left  his 
hands  a  truly  scientific  subject  with  important 
results  established,  and  the  right  method  of 
progress  indicated.  Perhaps  the  invention 
of  trigonometry  was  not  the  least  of  these 
services  to  the  main  science  of  his  study.  The 
next  man  who  extended  trigonometry  was 
Ptolemy,  the  great  Alexandrian  astronomer, 
whom  we  have  already  mentioned.     We  now 
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see  at  once  the  great  contrast  between  conic 
sections  and  trigonometry.  The  origin  of 
trigonometry  was  practical ;  it  was  invented 
because  it  was  necessary  for  astronomical  re- 

search. The  origin  of  conic  sections  was 
purely  theoretical.  The  only  reason  for  its 
initial  study  was  the  abstract  interest  of  the 
ideas  involved.  Characteristically  enough 
conic  sections  were  invented  about  150  years 
earlier  than  trigonometry,  during  the  very 
best  period  of  Greek  thought.  But  the  im- 

portance of  trigonometry,  both  to  the  theory 
and  the  application  of  mathematics,  is  only 
one  of  innumerable  instances  of  the  fruitful 
ideas  which  the  general  science  has  gained 
from  its  practical  applications. 

We  will  try  and  make  clear  to  ourselves 
what  trigonometry  is,  and  why  it  should  be 
generated  by  the  scientific  study  of  astronomy. 
In  the  first  place  :  What  are  the  measure- 

ments which  can  be  made  by  an  astronomer  ? 
They  are  measurements  of  time  and  measure- 

ments of  angles.  The  astronomer  may  adjust 
a  telescope  (for  it  is  easier  to  discuss  the 
familiar  instrument  of  modern  astronomers) 
so  that  it  can  only  turn  about  a  fixed  axis 
pointing  east  and  west ;  the  result  is  that 
the  telescope  can  only  point  to  the  south,  with 
a  greater  or  less  elevation  of  direction,  or,  if 
turned  round  beyond  the  zenith,  point  to  the 
north.     This  is  the  transit  instrument,    the 



TRIGONOMETRY  175 

great  instrument  for  the  exact  measurement 
of  the  times  at  which  stars  are  due  south  or 

due  north.  But  indirectly  this  instrument 
measures  angles.  For  when  the  time  elapsed 
between  the  transits  of  two  stars  has  been 

noted,  by  the  assumption  of  the  uniform 
rotation  of  the  earth,  we  obtain  the  angle 
through  which  the  earth  has  turned  in  that 
period  of  time.  Again,  by  other  instruments, 
the  angle  between  two  stars  can  be  directly 
measured.     For  if  E  is  the  eye  of  the  astrono- 

mer, and  EA  and  EB  are  the  directions  in 

which  the  stars  are  seen,  it  is  easy  to  devise 
instruments  which  shall  measure  the  angle 
AEB.  Hence,  when  the  astronomer  is  form- 

ing a  survey  of  the  heavens,  he  is,  in  fact, 
measuring  angles  so  as  to  fix  the  relative 
directions  of  the  stars  and  planets  at  any  in- 

stant.    Again,  in  the  analogous  problem  of 
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land-surveying,  angles  are  the  chief  subject 
of  measurements.  The  direct  measurements 
of  length  are  only  rarely  possible  with  any 
accuracy ;  rivers,  houses,  forests,  mountains, 
and  general  irregularities  of  ground  all  get  in 
the  way.  The  survey  of  a  whole  country  will 
depend  only  on  one  or  two  direct  measure- 

ments of  length,  made  with  the  greatest 
elaboration  in  selected  places  like  Salisbury 
Plain.  The  main  work  of  a  survey  is  the 
measurement  of  angles.  For  example,  A^  B, 
and  C  will  be  conspicuous  points   in  the  dis- 

Fig.  23. 

trict  surveyed,  say  the  tops  of  church  towers. 
These  points  are  visible  each  from  the  others. 
Then  it  is  a  very  simple  matter  at  A  to 
measure  the  angle  BAC,  and  at  B  to  measure 
the  angle  ABC,  and  at  C  to  measure  the  angle 
BCA.  Theoretically,  it  is  only  necessary  to 
measure  two  of  these  angles  ;  for,  by  a  well- 
known  proposition  in  geometry,  the  sum  of 
the  three  angles  of  a  triangle  amounts  to  two 
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right-angles,  so  that  when  two  of  the  angles 
are  known,  the  third  can  be  deduced.  It  is 
better,  however,  in  practice  to  measure  all 
three,  and  then  any  small  errors  of  observa- 

tion can  be  checked.  In  the  process  of  map- 
making  a  country  is  completely  covered  with 
triangles  in  this  way.  This  process  is  called 
triangulation,  and  is  the  fundamental  process 
in  a  survey. 
Now,  when  all  the  angles  of  a  triangle  are 

known,  the  shape  of  the  triangle  is  known — 
that  is,  the  shape  as  distinguished  from  the 
size.  We  here  come  upon  the  great  principle 
of  geometrical  similarity.  The  idea  is  very 
familiar  to  us  in  its  practical  applications. 
We  are  all  familiar  with  the  idea  of  a  plan 
drawn  to  scale.  Thus  if  the  scale  of  a  plan 
be  an  inch  to  a  yard,  a  length  of  three  inches 
in  the  plan  means  a  length  of  three  yards  in 
the  original.  Also  the  shapes  depicted  in  the 
plan  are  the  shapes  in  the  original,  so  that  a 
right-angle  in  the  original  appears  as  a  right- 
angle  in  the  plan.  Similarly  in  a  map,  which 
is  only  a  plan  of  a  country,  the  proportions 
of  the  lengths  in  the  map  are  the  proportions 
of  the  distances  between  the  places  indicated, 
and  the  directions  in  the  map  are  the  direc- 

tions in  the  country.  For  example,  if  in  the 
map  one  place  is  north-north-west  of  the 
other,  so  it  is  in  reality  ;  that  is  to  say,  in  a 
map  the  angles  are  the  same  as  in  reality. 
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Geometrical  similarity  may  be  defined  thus : 
Two  figures  are  similar  (i)  if  to  any  point 
in  one  figure  a  point  in  the  other  figure 
corresponds,  so  that  to  every  line  there  is  a 
corresponding  line,  and  to  every  angle  a 
corresponding  angle,  and  (ii)  if  the  lengths 

of  corresponding  lines  are  in  a  fixed  propor- 
tion, and  the  magnitudes  of  corresponding 

angles  are  the  same.  The  fixed  proportion 
of  the  lengths  of  corresponding  lines  in  a  map 
(or  plan)  and  in  the  original  is  called  the  scale 
of  the  map.  The  scale  should  always  be 
indicated  on  the  margin  of  every  map  and 
plan.  It  has  already  been  pointed  out  that 
two  triangles  whose  angles  are  respectively 
equal  are  similar.     Thus,  if  the  two  triangles 

Fig.  24. 

ABC  and  DEF  have  the  angles  at  A  and  D 

equal,  and  those  at  B  and  E,  and  those  at  C 
and  Fy  then  DE  is  to  AB  in  the  same  propor- 
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tion  as  EF  is  to  BC,  and  as  FD  is  to  CA. 

But  it  is  not  true  of  other  figures  that  simi- 
larity is  guaranteed  by  the  mere  equality  of 

angles.  Take  for  example,  the  familiar  cases 
of  a  rectangle  and  a  square.  Let  ABCD  be 
a  square,  and  ABEF  be  a  rectangle.  Then 
all  the  corresponding  angles  are  equal.     But 

Fig.  25. 

whereas  the  side  AB  of  the  square  is  equal  to 
the  side  AB  of  the  rectangle,  the  side  BC  of 
the  square  is  about  half  the  size  of  the  side 
BE  of  the  rectangle.  Hence  it  is  not  true 
that  the  square  ABCD  is  similar  to  the  rect- 

angle ABEF.  This  peculiar  property  of  the 
triangle,  which  is  not  shared  by  other  recti- 

linear figures,  makes  it  the  fundamental 
figure  in  the  theory  of  similarity.  Hence  in 
surveys,  triangulation  is  the  fundamental 

process  ;  and  hence  also  arises  the  word  "  tri- 
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gonometry,"  derived  from  the  two  Greek 
words  trigonon  a  triangle  and  metria  measure- 

ment. The  fundamental  question  from  which 
trigonometry  arose  is  this  :  Given  the  magni- 

tudes of  the  angles  of  a  triangle,  what  can  be 
stated  as  to  the  relative  magnitudes  of  the 

sides.  Note  that  we  say  "  relative  magnitudes 
of  the  sides,"  since  by  the  theory  of  similarity 
it  is  only  the  proportions  of  the  sides  which 
are  known.  In  order  to  answer  this  ques- 

tion, certain  functions  of  the  magnitudes  of 
an  angle,  considered  as  the  argument,  are  in- 

troduced. In  their  origin  these  functions 
were  got  at  by  considering  a  right-angled  tri- 

angle, and  the  magnitude  of  the  angle  was 
defined  by  the  length  of  the  arc  of  a  circle. 
In  modern  elementary  books,  the  funda- 

mental position  of  the  arc  of  the  circle  as  de- 
fining the  magnitude  of  the  angle  has  been 

pushed  somewhat  to  the  background,  not  to 
the  advantage  either  of  theory  or  clearness 
of  explanation.  It  must  first  be  noticed 
that,  in  relation  to  similarity,  the  circle  holds 
the  same  fundamental  position  among  curvi- 

linear figures,  as  does  the  triangle  among 
rectilinear  figures.  Any  two  circles  are  simi- 

lar figures ;  they  only  differ  in  scale.  The 
lengths  of  the  circumferences  of  two  circles, 

such  as  APA'  and  AiPiA\  in  the  fig.  26  are 
in  proportion  to  the  lengths  of  their  radii. 
Furthermore,  if  the  two  circles  have  the  same 
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centre  O,  as  do  the  two  circles  in  fig.  26,  then 
the  arcs  AP  and  AiPi  intercepted  by  the 
arms  of  any  angle  AOP,  are  also  in  propor- 

tion to  their  radii.     Hence  the  ratio  of  the 

Fig.  26. 

length  of  the  arc  AP  to  the  length  of  the 
sltc  .AP 

radius  OP,  that  is  — ^. — ^— -  is  a  number  which radms  OP 

is  quite  independent  of  the  length  OP,  and  is 
arc  A\P\ 

the  same  as  the  fraction 
This  frac- 

radiusOPi' tion  of  "  arc  divided  by  radius  "  is  the  proper 
theoretical  way  to  measure  the  magnitude  of 
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an  angle  ;  for  it  is  dependent  on  no  arbitrary 
unit  of  length,  and  on  no  arbitrary  way  of 
dividing  up  any  arbitrarily  assumed  angle, AP 

such  as  a  right-angle.     Thus  the  fraction  y^-y 
OA 

represents  the  magnitude  of  the  angle  AOP. 
Now  draw  PM  perpendicularly  to  OA.  Then 
the  Greek  mathematicians  called  the  line  PM 
the  sine  of  the  arc  AP,  and  the  line  OM  the 
cosine  of  the  arc  AP.  They  were  well  aware 
that  the  importance  of  the  relations  of  these 
various  lines  to  each  other  was  dependent  on 
the  theory  of  similarity  which  we  have  just 
expounded.  But  they  did  not  make  their 
definitions  express  the  properties  which  arise 
from  this  theory.  Also  they  had  not  in  their 
heads  the  modern  general  ideas  respecting 
functions  as  correlating  pairs  of  variable  num- 

bers, nor  in  fact  were  they  aware  of  any 
modern  conception  of  algebra  and  algebraic 
analysis.  Accordingly,  it  was  natural  to 
them  to  think  merely  of  the  relations  between 
certain  lines  in  a  diagram.  For  us  the  case 
is  different :  we  wish  to  embody  our  more 
powerful  ideas. 

Hence,    in   modern    mathematics,    instead 
of   considering    the    arc    AP,   we    consider 

AP 
the   fraction    ̂ y^,   which    is  a  number   the 

same  for  all  lengths  of  OP  ;  and,  instead  of 
considering  the  lines  PM  and  OM,  we  con- 
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sider  the  fractions  ̂ ^  and  j^W^  which  again 

are  numbers  not  dependent  on  the  length  of 
OP,  i.e.  not  dependent  on  the  scale  of  our PM 

diagrams.     Then  we  define  the  number  -y=- 
PA 

to  be  the  sine  of  the  number  yyp,  and  the 

number  j^  to  be  the  cosine  of  the  number 

jyp.     These  fractional  forms  are  clumsy  to 
AP 

print ;    so  let  us  put  u  for  the  fraction  ̂ yp, 

which  represents  the  magnitude  of  the  angle 
PM 

AOP,  and  put  v  for  the  fraction  ̂ yp-,  and  w 

for  the  fraction  j^.  Then  u,  v,  vc,  are  num- 

bers, and,  since  we  are  talking  of  any  angle 
AOP,  they  are  variable  numbers.  But  a 
correlation  exists  between  their  magnitudes, 
so  that  when  u  {i.e.  the  angle  AOP)  is  given 
the  magnitudes  of  v  and  w  are  definitely  deter- 

mined. Hence  v  and  w  are  functions  of  the 
argument  u.  We  have  called  v  the  sine  of 

u,  and  tt"  the  cosine  of  u.  We  wish  to  adapt 
the  general  functional  notation  y=f{x)  to 
these  special  cases :  so  in  modern  mathe- 

matics we  wTite  sin  for  "  /  "  when  we  want  to 
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indicate  the  special  function  of  "  sine,"  and 
"  cos  "  for  "  /  "  when  we  want  to  indicate 
the  special  function  of  "cosine."  Thus,  with 
the  above  meanings  for  w,  v,  w,  we  get 

v=sin  u,  and  w=cos  w, 

where  the  brackets  surrounding  the  x  in  f{x) 
are  omitted  for  the  special  functions.  The 
meaning  of  these  functions  sin  and  cos  as 
correlating  the  pairs  of  numbers  u  and  v,  and 
u  and  w  is,  that  the  functional  relations  are  to 
be  found  by  constructing  (c/.  fig.  26)  an  angle 

AOP,  whose  measure  "  AP  divided  by  OP  " 
is  equal  to  u,  and  that  then  v  is  the  number 

given  by  "  PM  divided  by  OP  "  and  w  is  the 
number  given  by  "  OM  divided  by  OP.^* 

It  is  evident  that  without  some  further  defi- 
nitions we  shall  get  into  difficulties  when  the 

number  u  is  taken  too  large.  For  then  the  arc 
AP  may  be  greater  than  one-quarter  of  the 
circumference  of  the  circle,  and  the  point  M 

(of.  fig.  26)  may  fall  between  O  and  ̂ ' and  not 
between  O  and  A.  Also  P  may  be  below 

the  line  AOA*  and  not  above  it  as  in  fig.  26. 
In  order  to  get  over  this  difficulty  we  have 
recourse  to  the  ideas  and  conventions  of  co- 

ordinate geometry  in  making  our  complete 
definitions  of  the  sine  and  cosine.  Let  one 
arm  OA  of  the  angle  be  the  axis  OX^  and 
produce  the  axis  backwards  to  obtain  its 

negative   part   OX'.    Draw   the   other   axis 
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YOY'  perpendicular  to  it.  Let  any  point  P at  a  distance  r  from  O  have  coordinates  x 
and  y.  These  coordinates  are  both  positive 

in  the  first  "  quadrant  "  of  the  plan,  e.g.  the 
coordinates  x  and  y  of  P  in  fig.  27.     In  the 

other  quadrants,  either  one  or  both  of  the 

coordinates  are  negative,  for  example,  x'  and 
y  for  P',  and  x'  and  y'  for  P',  and  x'  and  y' 
for  P",  and  x  and  y'  for  P"  in  fig.  27,  where 
x'  and  «/'  are  both  negative  numbers.  The 
positive  angle  POA  is  the  arc  AP  divided 

by  f ,  its  sine  is  -  and  its  cosine  is  - ;  the  posi- 
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tive  angle  P'OA  is  the  arc  ABP'  divided  by  r, 
•        •       •    tj  x' 
its  sine  is  -  and  cosine      ;   the  positive  angle 

P'OA  is  the  arc  ABA'P"  divided  by  r,  its 
•     V'  x' 

sine  IS  -    and  its  cosine  is  -  ;    the  positive 

angle  P'OA  is  the  arc  ABA'B'P"'  divided 

by  r,  its  sine  is  -  and  its  cosine  is  -. r  r 

But  even  now  we  have  not  gone  far  enough. 
For  suppose  we  choose  w  to  be  a  number 
greater  than  the  ratio  of  the  whole  circum- 

ference of  the  circle  to  its  radius.  Owing  to 
the  similarity  of  all  circles  this  ratio  is  the 
same  for  all  circles.  It  is  always  denoted  in 
mathematics  by  the  symbol  27r,  where  ir 
is  the  Greek  form  of  the  letter  p  and  its 

name  in  the  Greek  alphabet  is  "  pi."  It  can 
be  proved  that  tt  is  an  incommensurable 
number,  and  that  therefore  its  value  cannot 
be  expressed  by  any  fraction,  or  by  any 
terminating  or  recurring  decimal.  Its  value 

to  a  few  decimal  places  is  3'14159  ;  for  many 
purposes  a  sufficiently  accurate  approximate 

22 
value  is  -r.     Mathematicians  can  easily  cal- 

culate  TT  to  any  degree  of  accuracy  required, 

just  as  \/2  can  be  so  calculated.  Its  value 

has   been   actually   given   to   707   places    of 
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decimals.  Such  elaboration  of  calculation  is 

merely  a  curiosity,  and  of  no  practical  or 
theoretical  interest.  The  accurate  deter- 

mination of  TT  is  one  of  the  two  parts  of 
the  famous  problem  of  squaring  the  circle. 
The  other  part  of  the  problem  is,  by  the 
theoretical  methods  of  pure  geometry  to 
describe  a  straight  line  equal  in  length  to  the 
circumference.  Both  parts  of  the  problem 
are  now  known  to  be  impossible  ;  and  the 
insoluble  problem  has  now  lost  all  special 

practical  or  theoretical  interest,  having  be- 
come absorbed  in  wider  ideas. 

After  this  digression  on  the  value  of  tt,  we 
now  return  to  the  question  of  the  general 
definition  of  the  magnitude  of  an  angle,  so  as 
to  be  able  to  produce  an  angle  corresponding 
to  any  value  u.  Suppose  a  moving  point,  Q, 
to  start  from  A  on  OX  (cf .  fig.  27),  and  to  rotate 

in  the  positive  direction  (anti-clockwise,  in 
the  figure  considered)  round  the  circumference 
of  the  circle  for  any  number  of  times,  finally 

resting  at  any  point,  e.g.  at  P  or  P'  or  P"  or 
P"\  Then  the  total  length  of  the  curvilinear 
circular  path  traversed,  divided  by  the  radius 
of  the  circle,  r,  is  the  generalized  definition  of 
a  positive  angle  of  any  size.  Let  x,  y  be  the 
coordinates  of  the  point  in  which  the  point  Q 

rests,  i.e.'m  one  of  the  four  alternative  positions 
mentioned  in  fig.  27 ;  x  and  y  (as  here  used)  will 

either  x  and  i/,  or  x'  and  y,  or  x'  and  y\  or  x 
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and  y".     Then  the  sign  of  this   generalized 
angle  is   -  and  its  cosine  is  -.     With  these 

definitions  the  functional  relations  u=sin  u 

and  s:«j=cos  u,  are  at  last  defined  for  all  posi- 
tive real  values  of  u.  For  negative  values  of 

u  we  simply  take  rotation  of  Q  in  the  opposite 
(clockwise)  direction  ;  but  it  is  not  worth  our 
while  to  elaborate  further  on  this  point,  now 
that  the  general  method  of  procedure  has 
been  explained. 

These  functions  of  sine  and  cosine,  as  thus 
defined,  enable  us  to  deal  with  the  problems 
concerning  the  triangle  from  which  Trigono- 

metry took  its  rise.  But  we  are  now  in  a 
position  to  relate  Trigonometry  to  the  wider 
idea  of  Periodicity  of  which  the  importance 
was  explained  in  the  last  chapter.  It  is  easy 
to  see  that  the  functions  sin  u  and  cos  u  are 
periodic  functions  of  u.  For  consider  the 
position,  P  (in  fig.  27),  of  a  moving  point,  Q, 
which  has  started  from  A  and  revolved  round 
the  circle.     This  position,  P,  marks  the  angles 
arc  AP       J  „       ,  arc  AP        ,   .       ,  arc  AP 
  ,  and  2  ir-]   ,  and  4  ttH   > r  r  r 

and  6  TT  H   — ,  and  so  on  indefinitely.    Now, 

all  these  angles  have  the  same  sine  and  cosine, 

namely,  "-  and  -.    Hence  it  is  easy  to  see  that, 
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if  u  be  chosen  to  have  any  value,  the  argu- 
ments u  and  2  tt+w,  and  47r+w,  and  67r-f  m, 

and  Stt+w  and  so  on  indefinitely,  have  all  the 
same  values  for  the  corresponding  sines  and 
cosines.     In  other  words, 

sin  M=sin  (27r+w)=sin  (47r+u)=sin  (67r-fM) 
=etc.  ; 

cos  w=cos  (27r+w)=cos  (47r+w)=cos  (Ctt+m) =etc. 

This  fact  is  expressed  by  saying  that  sin  u  and 
cos  u  are  periodic  functions  with  their  period 
equal  to  27r. 

The  graph  of  the  function  ?/=sin  x  (notice 
that  we  now  abandon  v  and  u  for  the  more 

familiar  y  and  x)  is  shown  in  fig.  28.  We  take 
on  the  axis  of  x  any  arbitrary  length  at  pleasure 
to  represent  the  number  tt,  and  on  the  axis 

of  y  any  arbitrary  length  at  pleasure  to  repre- 
sent the  number  1.  The  numerical  values  of 

the  sine  and  cosine  can  never  exceed  unity. 
The  recurrence  of  the  figure  after  periods  of 
27r  will  be  noticed.  This  graph  represents  the 
simplest  style  of  periodic  function,  out  of 
which  all  others  are  constructed.  The  cosine 

gives  nothing  fundamentally  different  from  the 
sine.     For  it  is  easy  to  prove  that  cos  a;  = 

sin  {x-\--) ;  hence  it  can  be  seen  that  the 

graph  of  cos  x  is  simply  fig.  28  modified  by 
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drawing  the  axis  of  OF  through  the  point 

on  OX  marked  ̂ ,  instead  of  drawing  it  in 
its  actual  position  on  the  figure. 

It  is  easy  to  construct  a  '  sine  '  function  in 

Fig.  28. 

which  the  period  has  any  assigned  value  a. 
For  we  have  only  to  write 

i/=sin   , 
and  then 

sm  — ^   ^  =sin-^   f-27r 
a  \  a 

1        .  27raj 1=  sm   . 

J  « Thus  the  period  of  this  new  function  is  now  a. 
Let  us  now  give  a  general  definition  of  what 
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we  mean  by  a  periodic  function.  The  function 
i{x)  is  periodic,  with  the  period  a,  if  (i)  for  any 
value  of  X  we  have  f{x)=f{x+a),  and  (ii)  there 
is  no  number  b  smaller  than  a  such  that  for 

any  value  of  x,  j{x)=j{x+h). 
The  second  clause  is  put  into  the  definition 

because  when  we  have  sin  - — ,  it  is  not  only 

periodic  in  the  period  a,  but  also  in  the  periods 
2a  and  3a,  and  so  on  ;  this  arises  since 

27r(ir+3a)        .    (2'7tx  ,  _   \       .     ̂ ttx ^         '  '  —    cin  I   LHtt  I  : — cir»     Sin- — ^^ —   '  =  smi   l-67rl=sm a  \  a  /  a 

So  it  is  the  smallest  period  which  we  want  to 
get  hold  of  and  call  the  period  of  the  function. 
The  greater  part  of  the  abstract  theory  of 

periodic  functions  and  the  whole  of  the  appli- 
cations of  the  theory  to  Physical  Science  are 

dominated  by  an  important  theorem  called 

Fourier's  Theorem  ;  namely  that,  if  f{x)  be  a 
periodic  function  with  the  period  a  and  if  f{x) 
also  satisfies  certain  conditions,  which  practic- 

ally are  always  presupposed  in  functions  sug- 
gested by  natural  phenomena,  then  f{x)  can 

be  written  as  the  sum  of  a  set  of  terms  in  the 
form 

co+cism  I   \-eij  +C2  sm  I   [-^2 ) 

.      /e-rrx  \ 
-fC3  sm  (^   1-^3)+  etc. 
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In  this  formula  co,  Ci,  C2,  C3,  etc.,  and  also 
^i>  ̂ 2,  ̂ 35  etc.,  are  constants,  chosen  so  as  to 
suit  the  particular  function.  Again  we  have 
to  ask,  How  many  terms  have  to  be  chosen  ? 
And  here  a  new  difficulty  arises  :  for  we  can 
prove  that,  though  in  some  particular  cases  a 
definite  number  will  do,  yet  in  general  all  we 
can  do  is  to  approximate  as  closely  as  we  like 
to  the  value  of  the  function  by  taking  more 
and  more  terms.  This  process  of  gradual 
approximation  brings  us  to  the  consideration 
of  the  theory  of  infinite  series,  an  essential 
part  of  mathematical  theory  which  we  will 
consider  in  the  next  chapter. 

The  above  method  of  expressing  a  periodic 
function  as  a  sum  of  sines  is  called  the  "  har- 

monic analysis "  of  the  function.  For  ex- 
ample, at  any  point  on  the  sea  coast  the  tides 

rise  and  fall  periodically.  Thus  at  a  point 
near  the  Straits  of  Dover  there  will  be  two 
daily  tides  due  to  the  rotation  of  the  earth. 
The  daily  rise  and  fall  of  the  tides  are  com- 

plicated by  the  fact  that  there  are  two  tidal 
waves,  one  coming  up  the  English  Channel, 
and  the  other  which  has  swept  round  the 
North  of  Scotland,  and  has  then  come  south- 

ward down  the  North  Sea.  Again  some  high 
tides  are  higher  than  others  :  this  is  due  to 
the  fact  that  the  Sun  has  also  a  tide-generating 
influence  as  well  as  the  Moon.  In  this  way 
monthly  and  other  periods  are  introduced. 
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We  leave  out  of  account  the  exceptional  in- 
fluence of  winds  which  cannot  be  foreseen. 

The  general  problem  of  the  harmonic  analysis 
of  the  tides  is  to  find  sets  of  terms  like  those 
in  the  expression  on  page  191  above,  such  that 
each  set  will  give  with  approximate  accuracy 
the  contribution  of  the  tide-generating  influ- 

ences of  one  "  period  "  to  the  height  of  the 
tide  at  any  instant.  The  argument  x  will 
therefore  be  the  time  reckoned  from  any  con- 

venient commencement. 
Again,  the  motion  of  vibration  of  a  violin 

string  is  submitted  to  a  similar  harmonic 
analysis,  and  so  are  the  vibrations  of  the 
ether  and  the  air,  corresponding  respectively 
to  waves  of  light  and  waves  of  sound.  We 
are  here  in  the  presence  of  one  of  the  funda- 

mental processes  of  mathematical  physics — 
namely,  nothing  less  than  its  general  method 
of  dealing  with  the  great  natural  fact  of 
Periodicity. 

o 



CHAPTER   XIV 

SERIES 

No  part  of  Mathematics  suffers  more  from 
the  triviahty  of  its  initial  presentation  to 
beginners  than  the  great  subject  of  series. 
Two  minor  examples  of  series,  namely  arith- 

metic and  geometric  series,  are  considered  ; 
these  examples  are  important  because  they 
are  the  simplest  examples  of  an  important 
general  theory.  But  the  general  ideas  are 
never  disclosed  ;  and  thus  the  examples, which 

exemplify  nothing,  are  reduced  to  silly  triviali- 
ties. 

The  general  mathematical  idea  of  a  series 
is  that  of  a  set  of  things  ranged  in  order,  that 
is,  in  sequence.  This  meaning  is  accurately 
represented  in  the  common  use  of  the  term. 
Consider  for  example,  the  series  of  English 
Prime  Ministers  during  the  nineteenth  century, 
arranged  in  the  order  of  their  first  tenure  of 
that  office  within  the  century.  The  series 
commences  with  William  Pitt,  and  ends  with 

Lord  Rosebery,  who,  appropriately  enough, 
is  the  biographer  of  the  first  member.     We 

194 
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might  have  considered  other  serial  orders  for 
the  arrangement  of  these  men  ;  for  example, 
according  to  their  height  or  their  weight. 
These  other  suggested  orders  strike  us  as 
trivial  in  connection  with  Prime  Ministers, 
and  would  not  naturally  occur  to  the  mind  ; 
but  abstractedly  they  are  just  as  good  orders 
as  any  other.  \Mien  one  order  among  terms 
is  very  much  more  important  or  more  obvious 
than  other  orders,  it  is  often  spoken  of  as  the 
order  of  those  terms.  Thus  the  order  of  the 

integers  would  always  be  taken  to  mean  their 
order  as  arranged  in  order  of  magnitude.  But 
of  course  there  is  an  indefinite  number  of 

other  ways  of  arranging  them.  When  the 
number  of  things  considered  is  finite,  the 
number  of  ways  of  arranging  them  in  order  is 
called  the  number  of  their  permutations.  The 
number  of  permutations  of  a  set  of  n  things, 
where  n  is  some  finite  integer,  is 

n x(n— 1)  x*(n— 2)  x(n— 3)  x...  x4  x3  x2  xl 
that  is  to  say,  it  is  the  product  of  the  first  n 
integers ;  this  product  is  so  important  in 
mathematics  that  a  special  symbolism  is  used 

for  it,  and  it  is  alwavs  written  '  n  !  '  Thus, 
2!  =2x1  =2,  and  3!  =3x2x1  =6,  and  4!  =4 
x3x2xl=24,  and  5  1=5x4x3x2x1=120. 
As  n  increases,  the  value  of  n  !  increases  very 
quickly ;  thus  100  !  is  a  hundred  times  as 
large  as  99  ! 
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It  is  easy  to  verify  in  the  case  of  small 
values  of  n  that  n  !  is  the  number  of  ways 
of  arranging  n  things  in  order.  Thus  con- 

sider two  things  a  and  h  ;  these  are  capable 
of  the  two  orders  ah  and  ha,  and  2  !  =2. 

Again,  take  three  things  a,  h,  and  c  ;  these 
are  capable  of  the  six  orders,  ahc,  acb,  hac, 
bca,  cab,  cba,  and  3!  =6.  Similarly  for  the 
twenty-four  orders  in  which  four  things  a,  b, 
c,  and  d,  can  be  arranged. 
When  we  come  to  the  infinite  sets  of  things 

— like  the  sets  of  all  the  integers,  or  all  the 
fractions,  or  all  the  real  numbers  for  instance 

— we  come  at  once  upon  the  complications  of 
the  theory  of  order-types.  This  subject  was 
touched  upon  in  Chapter  VI.  in  considering 
the  possible  orders  of  the  integers,  and  of  the 
fractions,  and  of  the  real  numbers.  The 
whole  question  of  order-types  forms  a  com- 

paratively new  branch  of  mathematics  of 
great  importance.  We  shall  not  consider  it 
any  further.  All  the  infinite  series  which  we 
consider  now  are  of  the  same  order-type  as 
the  integers  arranged  in  ascending  order  of 
magnitude,  namely,  with  a  first  term,  and 
such  that  each  term  has  a  couple  of  next- 
door  neighbours,  one  on  either  side,  with  the 
exception  of  the  first  term  which  has,  of 
course,  only  one  next-door  neighbour.  Thus, 
if  m  be  any  integer  (not  zero),  there  will  be 
always  an  mth  term.     A  series  with  a  finite 
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number  of  terms  (say  n  terms)  has  the  same 
characteristics  as  far  as  next-door  neighbours 
are  concerned  as  an  infinite  series  ;  it  only 
differs  from  infinite  series  in  having  a  last 
term,  namely,  the  nth. 

The  important  thing  to  do  with  a  series  of 

numbers — using  for  the  future  *'  series  "  in 
the  restricted  sense  which  has  just  been  men- 

tioned— is  to  add  its  successive  terms  to- 
gether. 

Thus  if  Ml,  U2,  113,  .  .  .  Wn-  .  .  are  respec- 
tively the  1st,  2nd,  3rd,  4th,  .  .  .  nth,  .  .  . 

terms  of  a  series  of  numbers,  we  form  succes- 
sively the  series  Ui,  Ui-i-uo,  Wi+W2  +  «35  Wi  + 

«2+W3+W4,  and  so  on  ;  thus  the  sum  of  the 
1st  n  terms  may  be  written. 

II1+U2+U3+    -    .    •+Wn- 

If  the  series  has  only  a  finite  number  of 
terms,  we  come  at  last  in  this  way  to  the 
sum  of  the  whole  series  of  terms.  But,  if 
the  series  has  an  infinite  number  of  terms, 
this  process  of  successively  forming  the  sums 
of  the  terms  never  terminates  ;  and  in  this 
sense  there  is  no  such  thing  as  the  sum  of  an 
infinite  series. 

But  why  is  it  important  successively  to  add 
the  terms  of  a  series  in  this  way  ?  The  answer 
is  that  we  are  here  symbolizing  the  funda- 

mental mental  process  of  approximation. 
This  is  a  process  which  has  significance  far 
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beyond  the  regions  of  mathematics.  Our 
limited  intellects  cannot  deal  with  compli- 

cated material  all  at  once,  and  our  method  of 
arrangement  is  that  of  approximation.  The 
statesman  in  framing  his  speech  puts  the 
dominating  issues  first  and  lets  the  details 
fall  naturally  into  their  subordinate  places. 
There  is,  of  course,  the  converse  artistic 
method  of  preparing  the  imagination  by  the 
presentation  of  subordinate  or  special  details, 
and  then  gradually  rising  to  a  crisis.  In 
either  way  the  process  is  one  of  gradual  sum- 

mation of  effects  ;  and  this  is  exactly  what 
is  done  by  the  successive  summation  of  the 
terms  of  a  series.  Our  ordinary  method  of 
stating  numbers  is  such  a  process  of  gradual 
summation,  at  least,  in  the  case  of  large 
numbers.  Thus  568,213  presents  itself  to 
the  mind  as — 

500,000  +  60,000  +  8,000+200  +  10  +3 

In  the  case  of  decimal  fractions  this  is  so 

more  avowedly.     Thus  3-14159  is — 

Also,  3  and  3+^^,  and  3  +  iV+t4t;.  and  3+^ 

~i  TTTtjH"TirtrT]r»  and  o-\-^q  +T^(T+T70^7y+xi5"7nnr  are 
successive  approximations  to  the  complete  re- 

sult 3-14159.  If  we  read  568,213  backwards 
from  right  to  left,  starting  with  the  3  units, 
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we  read  it  in  the  artistic  way,  gradually  pre- 
paring the  mind  for  the  crisis  of  500,000. 

The  ordinary  process  of  numerical  multi- 
plication proceeds  by  means  of  the  summa- 

tion of  a  series.     Consider  the  computation 

342 
658 

2736 
1710 

2052 

225036 

Hence  the  three  lines  to  be  added  form  a 
series  of  which  the  first  term  is  the  upper 
line.  This  series  follows  the  artistic  method 
of  presenting  the  most  important  term  last, 
not  from  any  feeling  for  art,  but  because  of 
the  convenience  gained  by  keeping  a  firm 

hold  on  the  units'  place,  thus  enabling  us  to 
omit  some  O's,  formally  necessary. 

But  when  we  approximate  by  gradually 
adding  the  successive  terms  of  an  infinite 
series,  what  are  we  approximating  to  ?  The 

difficulty  is  that  the  series  has  no  "  sum  "  in 
the  straightforward  sense  of  the  word,  because 
the  operation  of  adding  together  its  terms 
can  never  be  completed.  The  answer  is  that 
we  are  approximating  to  the  limit  of  the 
summation  of  the  series,  and  we  must  now 
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proceed  to  explain  what  the  "  limit "  of  a series  is. 

The  summation  of  a  series  approximates  to 
a  limit  when  the  sum  of  any  number  of  its 
terms,  provided  the  number  be  large  enough, 
is  as  nearly  equal  to  the  limit  as  you  care  to 
approach.  But  this  description  of  the  mean- 

ing of  approximating  to  a  limit  evidently  will 
not  stand  the  vigorous  scrutiny  of  modern 
mathematics.  What  is  meant  by  large 
enough,  and  by  nearly  equal,  and  by  care  to 
approach  ?  All  these  vague  phrases  must  be 
explained  in  terms  of  the  simple  abstract 
ideas  which  alone  are  admitted  into  pure 
mathematics. 

Let  the  successive  terms  of  the  series  be 
Ui,  U2,  W3,  W4,  .  .  .  ,  Un,  etc.,  so  that  u^  is  the 
nth  term  of  the  series.  Also  let  s^  be  the 
sum  of  the  1st  n  terms,  whatever  n  may  be. 
So  that — 

S\=Ui,  S2=U\-\-U2,  53=Mi+W2+W3,  and 

Then  the  terms  Si,  S2,  S3,  .  .  .  Sn,  .  .  .  form 
a  new  series,  and  the  formation  of  this  series 
is  the  process  of  summation  of  the  original 

series.  Then  the  "  approximation "  of  the 
summation  of  the  original  series  to  a  "  limit  " 
means  the  "  approximation  of  the  terms  of 
this  new  series  to  a  limit."    And  we  have 
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now  to  explain  what  we  mean  by  the  approxi- 
mation to  a  limit  of  the  terms  of  a  series. 

Now,  remembering  the  definition  (given  in 

chapter  XII.)  of  a  standard  of  approxima- 
tion, the  idea  of  a  limit  means  this  :  I  is 

the  limit  of  the  terms  of  the  series  5i,  52, 
*3»  •  •  •  Sji,  .  .  .,  if,  corresponding  to  each 
real  number  k,  taken  as  a  standard  of 
approximation,  a  term  s^  of  the  series  can 
be  found  so  that  all  succeeding  terms  {i.e. 
^n-i-i»  5n+2>  6tc.)  approximate  to  I  within 
that  standard  of  approximation.  If  another 
smaller  standard  k^  be  chosen,  the  term 
Sn  may  be  too  early  in  the  series,  and  a 
later  term  5^  with  the  above  property  will 
then  be  found. 

If  this  property  holds,  it  is  evident  that  as 
you  go  along  to  series  S\,  S2,  53,  .  .  .,  5^,  .  .  . 
from  left  to  right,  after  a  time  you  come  to 
terms  all  of  which  are  nearer  to  I  than  any 
number  which  you  may  like  to  assign.  In 
other  words  you  approximate  to  I  as  closely 
as  you  like.  The  close  connection  of  this 
definition  of  the  limit  of  a  series  with  the 

definition  of  a  continuous  function  given  in 
chapter  XI.  will  be  immediately  perceived. 

Then  coming  back  to  the  original  series  Ui, 
M2>  U3,  .  .  .,  Uji,  .  .  .,  the  limit  of  the  terms  of 
the  series  Su  S2,  s^,  .  .  .,  5n,  .  .  .,  is  called 

the  "  sum  to  infinity  "  of  the  original  series. But  it  is  evident  that  this  use  of  the  word 
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"  sum  "  is  very  artificial,  and  we  must  not 
assume  the  analogous  properties  to  those  of 
the  ordinary  sum  of  a  finite  number  of  terms 
without  some  special  investigation. 

Let  us  look  at  an  example  of  a  "  sum  to 
infinity."  Consider  the  recurring  decimal 
•1111.  .  .  .  This  decimal  is  merely  a  way  of 

symbolizing  the  "sum  to  infinity  "  of  the  series 
•1,  -01,  -001,  -0001,  etc.  The  correspond- 

ing series  found  by  summation  is  5i=-l, 
52= -11,  53= -111,  54= -1111,  etc.  The  limit 
of  the  terms  of  this  series  is  ̂   ;  this  is  easy  to 
see  by  simple  division,  for 

i=  •l+-g\y==  •ll  +  yi^=  -111+^^^^^=  etc. 
Hence,  if  -^^  is  given  (the  k  of  the  definition), 
•1  and  all  succeeding  terms  differ  from  |  by 
less  than  y\  ;  if  -^-^^j-^  is  given  (another  choice 
for  the  k  of  the  definition),  -111  and  all 
succeeding  terms  differ  from  I  by  less  than 
j^^-^ ;  and  so  on,  whatever  choice  for  k  be 
made. 

It  is  evident  that  nothing  that  has  been 
said  gives  the  slightest  idea  as  to  how  the 

"sum  to  infinity"  of  a  series  is  to  be 
found.  We  have  merely  stated  the  condi- 

tions which  such  a  number  is  to  satisfy.  In- 
deed, a  general  method  for  finding  in  all 

cases  the  sum  to  infinity  of  a  series  is  intrinsic- 
ally out  of  the  question,  for  the  simple  reason 

that  such  a  "  sum,"  as  here  defined,  does  not 
always  exist.     Series  which  possess  a  sum  to 
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infinity  are  called  convergent,  and  those  which 
do  not  possess  a  sum  to  infinity  are  called 
divergent. 
An  obvious  example  of  a  divergent  series 

is  1,  2,  3,  .  .  .,  n  .  .  .  i.e.  the  series  of  in- 
tegers in  their  order  of  magnitude.  For 

whatever  number  I  you  try  to  take  as  its 
sum  to  infinity,  and  whatever  standard  of 
approximation  k  you  choose,  by  taking 
enough  terms  of  the  series  j'ou  can  always 
make  their  sum  differ  from  I  by  more  than 
k.  Again,  another  example  of  a  divergent 
series  is  1,  1,  1,  etc.,  i.e.  the  series  of 
which  each  term  is  equal  to  1.  Then  the 
sum  of  n  terms  is  n,  and  this  sum  grows 
without  limit  as  n  increases.  Again,  another 
example  of  a  divergent  series  is  1,  —1,  1,  —1, 
1,  —1,  etc.,  i.e.  the  series  in  which  the  terms 
are  alternately  1  and  —1.  The  sum  of  an 
odd  number  of  terms  is  1,  and  of  an  even 
number  of  terms  is  0.  Hence  the  terms  of 

the  series  ̂ i,  52,  S3,  ...«„»•••  do  not  ap- 
proximate to  a  limit,  although  they  do  not 

increase  without  limit. 

It  is  tempting  to  suppose  that  the  condi- 
tion for  ui,  U2,  .  .  .  Un,  ...  to  have  a  sum 

to  infinity  is  that  w^  should  decrease  inde- 
finitely as  n  increases.  Mathematics  would 

be  a  much  easier  science  than  it  is,  if  this 
were  the  case.  Unfortunately  the  supposition 
is  not  true. 
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For  example  the  series 

111  1 

■^'  2'  3'  4'  •  •  •'  n'  •  •  • 

is  divergent.  It  is  easy  to  see  that  this  is 
the  case  ;  for  consider  the  sum  of  n  terms 

beginning    at   the    (n+l)"'    term.     These    n 

terms  are  — —-,  — -— ,   -,  ...-—:    there 
n+1   n+2  n+3  2n 

are  n  of  them  and  —  is  the  least  among  them. 

Hence   their   sum   is   greater   than   n  times 

— ,   i.e.   is   greater  than  -.      Now,    without 

altering  the  sum  to  infinity,  if  it  exist,  we 
can  add  together  neighbouring  terms,  and 
obtain  the  series 

that  is,  by  what  has  been  said  above,  a  series 
whose  terms  after  the  2nd  are  greater  than 
those  of  the  series, 

Ij    29     2>    2>    etc., 

where  all  the  terms  after  the  first  are  equal. 
But  this  series  is  divergent.  Hence  the 
original  series  is  divergent. 

This   question   of   divergency   shows   how 
careful  we  must  be  in  arguing  from  the  pro- 
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perties  of  the  sum  of  a  finite  number  of  terms 
to  that  of  the  sum  of  an  infinite  series.  For 

the  most  elementary  property  of  a  finite 
number  of  terms  is  that  of  course  they 
possess  a  sum  :  but  even  this  fundamental 
property  is  not  necessarily  possessed  by  an 
infinite  series.  This  caution  merely  states 
that  we  must  not  be  misled  by  the  suggestion 

of  the.  technical  term  ''''sum  of  an  infinite 
series."  It  is  usual  to  indicate  the  sum  of 
the  infinite  series 

UU  U2,  W3,    .    .    .    Mn-    •    •    .    by 
Ml+«2+«3+    .    .    .     +Wn+    .    .    . 

We  now  pass  on  to  a  generalization  of  the 
idea  of  a  series,  which  mathematics,  true  to 
its  method,  makes  by  use  of  the  variable. 
Hitherto,  we  have  only  contemplated  series 
in  'which  each  definite  term  was  a  definite 
number.  But  equally  well  we  can  generalize, 
and  make  each  term  to  be  some  mathematical 

expression  containing  a  variable  ar.  Thus 

we  may  consider  the  series  1,  x,  x^,  a;^,  .  .  ., 
ic",  .  .  .,  and  the  series 

x^   ̂ 3  ij>n 

^'  y  ¥*  •  •  "  TT'  •  •  • 
In  order  to  symbolize  the  general  idea  of 

any  such  function,  conceive  of  a  function  of 
^.  fni'X)  say,  which  involves  in  its  formation 
a  variable  integer  n,  then,  by  giving  n  the 
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values  1,  2,  3,  etc.,  in  succession,  we  get  the 
series 

h{x),  f2{x),  i-iix),  .  .  .,  /n(a?),  .  .  . 

Such  a  series  may  be  convergent  for  some 
values  of  x  and  divergent  for  others.  It  is, 
in  fact,  rather  rare  to  find  a  series  involving  a 
variable  x  which  is  convergent  for  all  values 
of  X, — at  least  in  any  particular  instance  it  is 
very  unsafe  to  assume  that  this  is  the  case. 
For  example,  let  us  examine  the  simplest  of 

all  instances,  namely,  the  "  geometrical  '* series 

1,     Xf    X    ,     X'^f     ,m.fXf,am 

The  sum  of  n  terms  is  given  by 

Sn^l-\-X+X^+X^-}-    .    .    .    +a;". 

Now  multiply  both  sides  by  x  and  we  get 

XSn=CC+X^-\-X^-\-X'^+    .    .    .    +ir"+ic"+i 

Now  subtract  the  last  line  from  the  upper 
line  and  we  get 

*n(l  —X)  =Sn  —XSn=l—X^+^, 

and  hence  (if  x  be  not  equal  to  1) 

_l-a;"+^_    1    _ir"+i 
"~  1—x  ~l—x    T^ 

Now  if  X  be  numerically  less  than  1,  for  suffi- 

ciently large  values  of  n,   is  always  less 
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than  k,  however  k  be  chosen.  Thus,  if  x  be 

less  than  1,  the  series  1,  x,  x^,  .  .  .  sf^,  .  .  .  is 

convergent,  and   is  its  limit.     This  state- X  ~—x 

ment  is  symbolized  by 

,— =l+a:+a;2+  .  .  .   +a:"+  .  .  .,  {x  <\). 1 — X 

But  if  x  is  numerically  greater  than  1,  or 
numerically  equal  to  1,  the  series  is  divergent. 
In  other  words,  if  x  lie  between  —1  and  +1, 
the  series  is  convergent ;  but  if  x  be  equal 
to  —1  or  to  +1,  or  if  a?  lie  outside  the  interval 
—1  to  +1,  then  the  series  is  divergent.  Thus 

the  series  is  convergent  at  all  "  points " 
within  the  interval  —1  to  +1,  exclusive  of 
the  end  points. 

At  this  stage  of  our  enquiry  another  ques- 
tion arises.     Suppose  that  the  series 

h{x)+f2{x)^h{x)^  .  .  .   +Ux)+  .  .  . 

is  convergent  for  all  values  of  x  lying  within 
the  interval  a  to  h,  i.e.  f{x)  is  convergent  for 
any  value  of  x  which  is  greater  than  a  and 
less  than  b.  Also,  suppose  we  want  to  be 
sure  that  in  approximating  to  the  limit  we 
add  together  enough  terms  to  come  within 
some  standard  of  approximation  k.  Can  we 
always  state  some  number  of  terms,  say  n, 
such  that,  if  we  take  n  or  more  terms  to 
form  the   sum,   then  whatever   value   x   has 
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within  the  interval  we  have  satisfied  the 
desired  standard  of  approximation? 

Sometimes  we  can  and  sometimes  we  can- 
not do  this  for  each  value  of  k.  When  we 

can,  the  series  is  called  uniformly  convergent 
throughout  the  interval,  and  when  we  cannot 
do  so,  the  series  is  called  non-uniformly  con- 

vergent throughout  the  interval.  It  makes 
a  great  difference  to  the  properties  of  a  series 
whether  it  is  or  is  not  uniformly  convergent 
through  an  interval.  Let  us  illustrate  the 
matter  by  the  simplest  example  and  the 
simplest  numbers. 

Consider  the  geometric  series 

l+x+x'^-\-x^+  .  .  .   -1-0?" -I-  .  .  . 
It  is  convergent  throughout  the  interval 

—1  to  +1,  excluding  the  end  values  x=^-±_\. 
But  it  is  not  uniformly  convergent  through- 

out this  interval.  For  if  Sn{x)  be  the  sum  of 
n  terms,  we  have  proved  that  the  difference 

1  tc"+-' 
between   sJx)   and   the  limit    is    - — • 1—x        l—x 
Now  suppose  n  be  any  given  number  of  terms, 
say  20,  and  let  k  be  any  assigned  standard 
of  approximation,  say  -001.     Then,  by  taking 

w  near  enough  to  -f  1  or  near  enough'to  —  1, 

a;  21 

we  can  make  the  numerical  value  of   to 1—x 

be  greater  than   -001.     Thus  20  terms  will 
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not  do  over  the  whole  interval,  though  it  is 
more  than  enough  over  some  parts  of  it. 

The  same  reasoning  can  be  applied  what- 
ever other  number  we  take  instead  of  20, 

and  whatever  standard  of  approximation  in- 
stead of  -001.  Hence  the  geometric  series 

l-{-x-\-x^-{-x^-\-  .  .  .  -\-x^+  ...  is  non-uni- 
formly  convergent  over  its  whole  interval  of 

convergence  —1  to  -|-1.  But  if  we  take  any 
smaller  interval  lying  at  both  ends  within  the 

interval  —1  to  +1,  the  geometric  series  is 
uniformly  convergent  within  it.  For  ex- 

ample, take  the  interval  0  to  -f  iV«     Then  any 

value  for   n  which  makes    numericallv 
l—x 

less  than  k  at  these  limits  for  x  also  serves 

for  all  values  of  x  between  these  limits,  since 

it  so  happens  that   diminishes  in  numeri- 

cal  value  as  x  diminishes  in  numerical  value. 

For  example,  take  A;  =  -001;  then,  putting 
X  =  iV  ,  we  find  : 

for 
n=l,  ;,   -=:j — -T—  7T=     0111    .    .   ., 1  —  X      1—  iV 

forn=2,  f— =-^=7^17=    00111  .  .  ., 

forn=3,  ̂ ^=-^  =Winr= -000111  ..  ., l—x      1  —  tV 

Thus  three  terms  will  do  for  the  whole  in- 
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terval,  though,  of  course,  for  some  parts  of 
the  interval  it  is  more  than  is  necessary. 
Notice  that,  because  l-{-x-\-x^-{-  .  .  . 
+a;"+  ...  is  convergent  (though  not  uni- 

formly) throughout  the  interval  —1  to  +1» 
for  each  value  of  x  in  the  interval  some  num- 

ber of  terms  n  can  be  found  which  will  satisfy 
a  desired  standard  of  approximation  ;  but, 
as  we  take  cc  nearer  and  nearer  to  either  end 

value  +1  or  —1,  larger  and  larger  values  of 
n  have  to  be  emj^loyed. 

It  is  curious  that  this  important  distinction 
between  uniform  and  non-uniform  conver- 

gence was  not  discovered  till  1847  by  Stokes — 
afterwards.  Sir  George  Stokes — and  later,  in- 

dependently in  1850  by  Seidel,  a  German 
mathematician. 

The  critical  points,  where  non-uniform  con- 
vergence comes  in,  are  not  necessarily  at  the 

limits  of  the  interval  throughout  which  con- 
vergence holds.  This  is  a  speciality  belonging 

to  the  geometric  series. 
In  the  case  of  the  geometric  series  1+''^ 

+x^+  .  .  .   +ic"-f  .  .  .,  a  simple  algebraic 

expression   can  be  given  for  its  limit  in 

its  interval  of  convergence.  But  this  is  not 

always  the  case.  Often  we  can  prove  a  series 
to  be  convergent  within  a  certain  interval, 

though  we  know  nothing  more  about  its 
limit  except  that  it  is  the  limit  of  the  series. 
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But  this  is  a  very  good  way  of  defining  a 
function  ;  viz.  as  the  limit  of  an  infinite  con- 

vergent series,  and  is,  in  fact,  the  way  in  which 
most  functions  are,  or  ought  to  be,  defined. 

Thus,   the   most   important   series   in   ele- 
mentary analysis  is 

x^      x^  iC" 

l+^  +  2j+3j+  .  .  .   +^+  .  .  ., 

where  n  !  has  the  meaning  defined  earlier  in 
this  chapter.  This  series  can  be  proved  to 
be  convergent  for  all  values  of  x,  and  to  be 
uniformly  convergent  within  any  interval 
which  we  like  to  take.  Hence  it  has  all  the 

comfortable  mathematical  properties  which 
a  series  should  have.  It  is  called  the  ex- 

ponential series.  Denote  its  sum  to  infinity 
by  expo;.     Thus,  by  definition, 

x"^     x^  a?" 
expa;  =  1  +  0:4-21+31+  •  .  •   +— 1+  •  •  • 

expj;  is  called  the  exponential  function. 
It   is   fairly   easy   to   prove,    with   a   little 

knowledge  of  elementary  mathematics,  that 

(exp^)x(exp?/)=exp(a;+t/)  .  .  .{A) 
In  other  words  that 

(expa;)x(expt/)  = 

i+(^+.)+^^+^^V  . . .  + (a^+y)V 
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This  property  (A)  is  an  example  of  what 
is  called  an  addition-theorem.  When  any 
function  [say  f{x)]  has  been  defined,  the  first 
thing  we  do  is  to  try  to  express  f{x-{-y)  in  terms 
of  known  functions  of  x  only,  and  known  func- 

tions of  y  only.  If  we  can  do  so,  the  result 
is  called  an  addition-theorem.  Addition- 
theorems  play  a  great  part  in  mathematical 
analysis.  Thus  the  addition-theorem  for  the 
sine  is  given  by 

sin  (^+2/)=sin  cc  cos  y-\-cos  x  sin  y, 

and  for  the  cosine  by 

cos  {x-\-y)=Qos  X  cos  ?/— sin  x  sin  y. 

As  a  matter  of  fact  the  best  ways  of  de- 
fining sin  X  and  cos  x  are  not  by  the  elaborate 

geometrical  methods  of  the  previous  chapter, 
but  as  the  limits  respectively  of  the  series 

x^     x^     x'^  ,    ̂ 
'"-8! +57-7-1 +'=''=•   •   ■   - 

and  l-|-j+|^_|-'+etc   
SO  that  we  put 

^3  ̂ O  qqI 

sin  a;=a,'-^+^j---j+etc   
x"^     x^     x^  ,    ̂ 

COS  .r=:l--,+4j-gj+etc   , 
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These  definitions  are  equivalent  to  the  geo- 
metrical definitions,  and  both  series  can  be 

proved  to  be  convergent  for  all  values  of  x^ 
and  uniformly  convergent  throughout  any 
interval.  These  series  for  sine  and  cosine 

have  a  general  likeness  to  the  exponential 
series  given  above.  They  are,  indeed,  intim- 

ately connected  with  it  by  means  of  the 
theory  of  imaginary  numbers  explained  in 
Chapters  VII.  and  VIII. 

The  graph  of  the  exponential  function  is 
given  in  fig.  29.  It  cuts  the  axis  OY  at  the 
point  2/  =  l,  as  evidently  it  ought  to  do,  since 
when  x=0  every  term  of  the  series  except 

the  first  is  zero.  The  importance  of  the  ex- 
ponential function  is  that  it  represents  any 

changing  physical  quantity  whose  rate  of 

increase  at  any  instant  is  a  uniform  per- 
centage  of  its   value   at   that   instant.     For 
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example,  the  above  graph  represents  the  size 
at  any  time  of  a  population  with  a  uniform 
birth-rate,  where  the  x  corresponds  to  the 
time  reckoned  from  any  convenient  day,  and 
the  y  represents  the  population  to  the  proper 
scale.  The  scale  must  be  such  that  OA  re- 

presents the  population  at  the  date  which  is 
taken  as  the  origin.  But  we  have  here  come 

upon  the  idea  of  "  rates  of  increase  "  which 
is  the  topic  for  the  next  chapter. 

An  important  function  nearly  allied  to  the 
exponential  function  is  found  by  putting  —x^ 
for  X  as  the  argument  in  the  exponential  func- 

tion. We  thus  get  exp.  {—x^).  The  graph 
i/=exp.  (— a;2)  is  given  in  fig.  30. 

Fig.  30. 

The  curve,  which  is  something  like  a  cocked 
hat,  is  called  the  curve  of  normal  error.     Its 



SERIES 215 

corresponding  function  is  vitally  important 
to  the  theory  of  statistics,  and  tells  us  in 
many  cases  the  sort  of  deviations  from  the 
average  results  which  we  are  to  expect. 

Another  important  function  is  found  by 
combining  the  exponential  function  with  the 
sine,  in  this  way  : 

y=exp{—cx)xsm   P 

Fig.  31. 

Its  graph  is  given  in  fig.  31.  The  points 
A,  B,  O,  C,  D,  E,  F,  are  placed  at  equal  in- 

tervals ^p,  and  an  unending  series  of  them 
should  be  drawn  forwards  and  backwards. 

This  function  represents  the  dying  away  of 
vibrations  under  the  influence  of  friction  or  of 

"  damping  "  forces.  Apart  from  the  friction, 
the  vibrations  would  be  periodic,  with  a 
period  p  ;    but  the  influence  of  the  friction 
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makes  the  extent  of  each  vibration  smaller 

than  that  of  the  preceding  by  a  constant  per- 
centage of  that  extent.  This  combination 

of  the  idea  of  "  periodicity  "  (which  requires 
the  sine  or  cosine  for  its  symbolism)  and  of 

"  constant  percentage  "  (which  requires  the 
exponential  function  for  its  symbolism)  is  the 
reason  for  the  form  of  this  function,  namely, 
its  form  as  a  product  of  a  sine-function  into 
an  exponential  function. 



CHAPTER    XV 

THE   DIFFERENTIAL   CALCULUS 

The  invention  of  the  differential  calculus 
marks  a  crisis  in  the  history  of  mathematics. 
The  progress  of  science  is  divided  between 
periods  characterized  by  a  slow  accumulation 
of  ideas  and  periods,  when,  owing  to  the  new 
material  for  thought  thus  patiently  collected, 
some  genius  by  the  invention  of  a  new  method 
or  a  new  point  of  view,  suddenly  transforms 
the  whole  subject  on  to  a  higher  level.  These 
contrasted  periods  in  the  progress  of  the 
history  of  thought  are  compared  by  Shelley 
to  the  formation  of  an  avalanche. 

The  sun-awakened  avalanche  !  whose  mass. 
Thrice  sifted  by  the  storm,  had  gathered  there 
Flake  after  flake, — in  heaven-defjang  minds 
As  thought  by  thought  is  piled,  till  some  gre^t  truth 
Is  loosened,  and  the  nations  echo  round. 

The  comparison  will  bear  some  pressing. 
The  final  burst  of  sunshine  which  awakens 

the  avalanche  is  not  necessarily  beyond  com- 
parison in  magnitude  with  the  other  powers 

of  nature  which  have  presided  over  its  slow 
217 
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formation.  The  same  is  true  in  science.  The 
genius  who  has  the  good  fortune  to  produce 
the  final  idea  which  transforms  a  whole 
region  of  thought,  does  not  necessarily  excel 
all  his  predecessors  who  have  worked  at  the 
preliminary  formation  of  ideas.  In  consider- 

ing the  history  of  science,  it  is  both  silly  and 
ungrateful  to  confine  our  admiration  with  a 
gaping  wonder  to  those  men  who  have  made 
the  final  advances  towards  a  new  epoch 

In  the  particular  instance  before  us,  the 
subject  had  a  long  history  before  it  as- 

sumed its  final  form  at  the  hands  of  its 
two  inventors.  There  are  some  traces  of  its 

methods  even  among  the  Greek  mathe- 
maticians, and  finally,  just  before  the  actual 

production  of  the  subject,  Fermat  (born  1601 
A.D.,  and  died  1665  a.d.),  a  distinguished 
French  mathematician,  had  so  improved  on 
previous  ideas  that  the  subject  was  all  but 
created  by  him.  Fermat,  also,  may  lay 
claim  to  be  the  joint  inventor  of  coordinate 
geometry  in  company  with  his  contemporary 
and  countryman,  Descartes.  It  was,  in  fact, 
Descartes  from  whom  the  world  of  science 

received  the  new  ideas,  but  Fermat  had  cer- 
tainly arrived  at  them  independently. 

We  need  not,  however,  stint  our  admira- 
tion either  for  Newton  or  for  Leibniz.  New- 
ton was  a  mathematician  and  a  student  of 

physical   science,   Leibniz   was   a   mathema- 
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tician  and  a  philosopher,  and  each  of  them 
in  his  own  department  of  thought  was  one  of 
the  greatest  men  of  genius  that  the  world 
has  known.  The  joint  invention  was  the 
occasion  of  an  unfortunate  and  not  very 
creditable  dispute.  Newton  was  using  the 
methods  of  Fluxions,  as  he  called  the  subject, 
in  1666,  and  employed  it  in  the  composition 
of  his  Principia,  although  in  the  work  as 
printed  any  special  algebraic  notation  is 

avoided.  But  he  did  not  print  a  direct  state- 
ment of  his  method  till  1693.  Leibniz  pub- 

lished his  first  statement  in  1684.  He  was 

accused  by  Newton's  friends  of  having  got 
it  from  a  MS.  by  Newton,  which  he  had  been 

shown  privately.  Leibniz  also  accused  New- 
ton of  having  plagiarized  from  him.  There 

is  now  not  very  much  doubt  but  that  both 
should  have  the  credit  of  being  independent 
discoverers.  The  subject  had  arrived  at  a 
stage  in  which  it  was  ripe  for  discovery,  and 
there  is  nothing  surprising  in  the  fact  that 

two  such  able  men  should  have  independ- 
ently hit  upon  it. 

These  joint  discoveries  are  quite  common 
in  science.  Discoveries  are  not  in  general 
made  before  they  have  been  led  up  to 
by  the  previous  trend  of  thought,  and  by 
that  time  many  minds  are  in  hot  pursuit 
of  the  important  idea.  If  we  merely  keep 
to    discoveries    in    which    Englishmen    are 
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concerned,  the  simultaneous  enunciation  of 
the  law  of  natural  selection  by  Darwin  and 
Wallace,  and  the  simultaneous  discovery  of 
Neptune  by  Adams  and  the  French  astrono- 

mer, Leverrier,  at  once  occur  to  the  mind. 
The  disputes,  as  to  whom  the  credit  ought  to 
be  given,  are  often  influenced  by  an  unworthy 
spirit  of  nationalism.  The  really  inspiring 
reflection  suggested  by  the  history  of  mathe- 

matics is  the  unity  of  thought  and  interest 
among  men  of  so  many  epochs,  so  many  nations, 
and  so  many  races.  Indians,  Egyptians, 
Assyrians,  Greeks,  Arabs,  Italians,  French- 

men, Germans,  Englishmen,  and  Russians,  have 
all  made  essential  contributions  to  the  pro- 

gress of  the  science.  Assuredly  the  jealous 
exaltation  of  the  contribution  of  one  particu- 

lar nation  is  not  to  show  the  larger  spirit. 
The  importance  of  the  differential  calculus 

arises  from  the  very  nature  of  the  subject, 
which  is  the  systematic  consideration  of  the 
rates  of  increase  of  functions.  This  idea  is 
immediately  presented  to  us  by  the  study  of 
nature  ;  velocity  is  the  rate  of  increase  of  the 
distance  travelled,  and  acceleration  is  the 
rate  of  increase  of  velocity.  Thus  the  funda- 

mental idea  of  change,  which  is  at  the  basis  of 
our  whole  perception  of  phenomena,  immedi- 

ately suggests  the  enquiry  as  to  the  rate  of 

change.  The  familiar  terms  of  "  quickly " 
and  "  slowly  "  gain  their  meaning  from  a  tacit 
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reference  to  rates  of  change.  Thus  the  differ- 
ential calculus  is  concerned  with  the  very 

key  of  the  position  from  which  mathematics 
can  be  successfully  applied  to  the  explanation 
of  the  course  of  nature. 

This  idea  of  the  rate  of  change  was  certainly 

in  Newton's  mind,  and  was  embodied  in  the 

T  tt 

Fig.  32. 

language  in  which  he  explained  the  subject. 
It  may  be  doubted,  however,  whether  this 
point  of  view,  derived  from  natural  phenomena, 
was  ever  much  in  the  minds  of  the  preced- 

ing mathematicians  who  prepared  the  subject 
for  its  birth.  They  were  concerned  with  the 
more  abstract  problems  of  drawing  tangents 
to  curves,  of  finding  the  lengths  of  curves,  and 
of  finding  the  areas  enclosed  by  curves.     The 
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last  two  problems,  of  the  rectification  of  curves- 
and  the  quadrature  of  curves  as  they  are 
named,  belong  to  the  Integral  Calculus,  which 
is  however  involved  in  the  same  general  subject 
as  the  Differential  Calculus. 

The  introduction  of  coordinate  geometry 
makes  the  two  points  of  view  coalesce.  For 
(cf.  fig.  32)  let  AQP  be  any  curved  line  and  let 
PT  be  the  tangent  at  the  point  P  on  it.  Let 
the  axes  of  coordinates  be  OX  and  OY  ;  and 
let  y=f[x)  be  the  equation  to  the  curve,  so  that 
OM==x,  and  PM=y.  Now  let  Q  be  any 
moving  point  on  the  curve,  with  coordinates 

a?i,  2/1, ;  then  ?/i  =j{x\).  And  let  Q'  be  the  point 
on  the  tangent  with  the  same  abscissa  Xx ; 

suppose  that  the  coordinates  of  Q'  are  Xx  and 
y'.  Now  suppose  that  A'^  moves  along  the axis  OX  from  left  to  right  with  a  uniform 
velocity  ;  then  it  is  easy  to  see  that  the  ordi- 

nate y'  of  the  point  Q'  on  the  tangent  TP  also 
increases  uniformly  as  Q'  moves  along  the 
tangent  in  a  corresponding  way.  In  fact  it  is 
easy  to  see  that  the  ratio  of  the  rate  of  increase 

of  Q'N  to  the  rate  of  increase  of  ON  is  in  the 
ratio  of  Q'N  to  TN,  which  is  the  same  at  all 
points  of  the  straight  line.  But  the  rate  of 
increase  of  QN,  which  is  the  rate  of  increase 
of  j{xx),  varies  from  point  to  point  of  the  curve 
so  long  as  it  is  not  straight.  As  Q  passes 
through  the  point  P,  the  rate  of  increase  of 
/  {x\)  (where  Xx  coincides  with  x  for  the  moment) 
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is  the  same  as  the  rate  of  increase  of  y'  on  the 
tangent  at  P.  Hence,  if  we  have  a  general 
method  of  determining  the  rate  of  increase 
of  a  function  j{x)  of  a  variable  x,  we  can 
determine  the  slope  of  the  tangent  at  any 
point  {Xy  y,)  on  a  curve,  and  thence  can 

draw  it.  Thus  the  problems  of  drawing  tan- 
gents to  a  curve,  and  of  determining  the 

rates  of  increase  of  a  function  are  really 
identical. 

It  will  be  noticed  that,  as  in  the  cases  of 
Conic  Sections  and  Trigonometry,  the  more 
artificial  of  the  two  points  of  view  is  the  one 
in  which  the  subject  took  its  rise.  The  really 
fundamental  aspect  of  the  science  only  rose 
into  prominence  comparatively  late  in  the 

day.  It  is  a  well-founded  historical  genera- 
lization, that  the  last  thing  to  be  discovered 

in  any  science  is  what  the  science  is  really 
about.  IMen  go  on  groping  for  centuries, 
guided  merely  by  a  dim  instinct  and  a  puzzled 

curiosity,  till  at  last  "  some  great  truth  is 
loosened." 

Let  us  take  some  special  cases  in  order  to 
familiarize  ourselves  with  the  sort  of  ideas 

which  we  want  to  make  precise.  A  train  is 

in  motion — how  shall  we  determine  its  velocity 
at  some  instant,  let  us  say,  at  noon  ?  We  can 
take  an  interval  of  five  minutes  which  includes 

noon,  and  measure  how  far  the  train  has  gone 
in  that  period.     Suppose  we  find  it  to  be  five 
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miles,  we  may  then  conclude  that  the  train 
was  running  at  the  rate  of  60  miles  per  hour. 
But  five  miles  is  a  long  distance,  and  we 
cannot  be  sure  that  just  at  noon  the  train 
was  moving  at  this  pace.  At  noon  it  may 
have  been  running  70  miles  per  hour,  and 
afterwards  the  break  may  have  been  put  on. 
It  will  be  safer  to  work  with  a  smaller  interval, 
say  one  minute,  which  includes  noon,  and  to 
measure  the  space  traversed  during  that 
period.  But  for  some  purposes  greater 
accuracy  may  be  required,  and  one  minute 
may  be  too  long.  In  practice,  the  necessary 
inaccuracy  of  our  measurements  makes  it 
useless  to  take  too  small  a  period  for  measure- 

ment. But  in  theory  the  smaller  the  period 
the  better,  and  we  are  tempted  to  say  that 
for  ideal  accuracy  an  infinitely  small  period 
is  required.  The  older  mathematicians,  in 
particular  Leibniz,  were  not  only  tempted, 
but  yielded  to  the  temptation,  and  did  say 
it.  Even  now  it  is  a  useful  fashion  of  speech, 
provided  that  we  know  how  to  interpret  it 
into  the  language  of  common  sense.  It  is 
curious  that,  in  his  exposition  of  the  founda- 

tions of  the  calculus,  Newton,  the  natural 
scientist,  is  much  more  philosophical  than 
Leibniz,  the  philosopher,  and  on  the  other 
hand,  Leibniz  provided  the  admirable  nota- 

tion which  has  been  so  essential  for  the  pro- 
gress of  the  subject. 
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Now  take  another  example  within  the  region 
of  pure  mathematics.  Let  us  proceed  to  find 
the  rate  of  increase  of  the  function  x^  for 
any  value  x  of  its  argument.  We  have  not 
yet  really  defined  what  we  mean  by  rate  of 
increase.  We  will  try  and  grasp  its  meaning 
in  relation  to  this  particular  case.  When  x 
increases  to  a;  4-^,  the  function  a;2  increases  to 

{x-\-}i)'^\  so  that  the  total  increase  has  been 
{x-\-hY—^'^,  due  to  an  increase  h,  in  the  argu- 

ment. Hence  throughout  the  interval  x  to 
{x-\-}i)  the  average  increase  of  the  function  per 

unit  increase  of  the  argument  is  ̂   ^   . 

But 

(x+h)^=x^+2hx-\-h\ 

and  therefore 

(x+h)2-x^     2hx+h^     „    ,  , 
  ^-—  =-X— =  2^+A. 

Thus  2x-\-h  is  the  average  increase  of  the 
function  x^  per  unit  increase  in  the  argument, 
the  average  being  taken  over  by  the  interval 
X  to  x-\-h.  But  2x+h  depends  on  h,  the  size 
of  the  interval.  We  shall  evidently  get  what 
we  want,  namely  the  rate  of  increase  at  the 
value  X  of  the  argument,  by  diminishing  h 
more  and  more.     Hence  in  the  limit  when  h 
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has  decreased  indefinitely,  we  say  that  2x  is  the 
rate  of  increase  of  x^  at  the  value  x  of  the 
argument. 

Here  again  we  are  apparently  driven  up 
against  the  idea  of  infinitely  small  quantities 
in  the  use  of  the  words  "  in  the  limit  when  h 

has  decreased  indefinitely."  Leibniz  held  that, 
mysterious  as  it  may  sound,  there  were  actu- 

ally existing  such  things  as  infinitely  small 

quantities,  and  of  course  infinitely  small  num- 

bers corresponding  to  them.  Newton's  lan- 
guage and  ideas  were  more  on  the  modern 

lines  ;  but  he  did  not  succeed  in  explaining 
the  matter  with  such  explicitness  so  as  to  be 

evidently  doing  more  than  explain  Leibniz's ideas  in  rather  indirect  language.  The  real 
explanation  of  the  subject  was  first  given  by 
Weierstrass  and  the  Berlin  School  of  mathe- 

maticians about  the  middle  of  the  nineteenth 

century.  But  between  Leibniz  and  Weier- 
strass a  copious  literature,  both  mathematical 

and  philosophical,  had  grown  up  round  these 

mysterious  infinitely  small  quantities  which 
mathematics  had  discovered  and  philosophy 

proceeded  to  explain.  Some  philosophers, 
Bishop  Berkeley,  for  instance,  correctly  denied 
the  validity  of  the  whole  idea,  though  for 
reasons  other  than  those  indicated  here.  But 

the  curious  fact  remained  that,  despite  all 

criticisms  of  the  foundations  of  the  subject, 

there  could  be  no  doubt  but  that  the  mathe- 
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matical  procedure  was  substantially  right.  In 

fact,  the  subjectwas  right,  though  the  explana- 
tions were  wrong.  It  is  this  possibility  of 

being  right,  albeit  with  entirely  wTong  ex- 
planations as  to  what  is  being  done,  that  so 

often  makes  external  criticism — that  is  so  far 

as  it  is  meant  to  stop  the  pursuit  of  a  method — 
singularly  barren  and  futile  in  the  progress  of 
science.  The  instinct  of  trained  observers, 
and  their  sense  of  curiosity,  due  to  the  fact 
that  they  are  obviously  getting  at  something, 
are  far  safer  guides.  Anyhow  the  general 
effect  of  the  success  of  the  Differential  Calculus 

was  to  generate  a  large  amount  of  bad  philo- 
sophy, centring  round  the  idea  of  the  in- 
finitely small.  The  relics  of  this  verbiage 

may  still  be  found  in  the  explanations  of 

many  elementary  mathematical  text-books  on 
the  Differential  Calculus.  It  is  a  safe  rule  to 

apply  that,  when  a  mathematical  or  philoso- 
phical author  writes  with  a  misty  profundity, 

he  is  talking  nonsense. 

Newton  would  have  phrased  the  question 
by  saying  that,  as  h  approaches  zero,  in  the 
limit  2x-\-h  becomes  2,x.  It  is  our  task  so  to 
explain  this  statement  as  to  show  that  it  does 
not  in  reality  covertly  assume  the  existence 

of  Leibniz's  infinitely  small  quantities.  In 
reading  over  the  Newtonian  method  of  state- 

ment, it  is  tempting  to  seek  simplicity  by 
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saying  that  2x-{-h  is  2x,  when  h  is  zero.  But 
this  will  not  do ;  for  it  thereby  abolishes  the 
interval  from  a;  to  a?  -\-h,  over  which  the  average 
increase  was  calculated.  The  problem  is,  how 
to  keep  an  interval  of  length  h  over  which  to 
calculate  the  average  increase,  and  at  the  same 
time  to  treat  h  as  if  it  were  zero.  Newton  did 
this  by  the  conception  of  a  limit,  and  we  now 

proceed  to  give  Weierstrass's  explanation  of 
its  real  meaning. 

In  the  first  place  notice  that,  in  discussing 
2x-{-h,  we  have  been  considering  x  as  fixed  in 
value  and  h  as  varying.  In  other  words  x 

has  been  treated  as  a  "  constant "  variable, 
or  parameter,  as  explained  in  Chapter  IX. ; 
and  we  have  really  been  considering  2x-{-h  as 
a  function  of  the  argument  h.  Hence  we  can 
generalize  the  question  on  hand,  and  ask 
what  we  mean  by  saying  that  the  function 
f{h)  tends  to  the  limit  I,  say,  as  its  argument 
h  tends  to  the  value  zero.  But  again  we  shall 
see  that  the  special  value  zero  for  the  argument 
does  not  belong  to  the  essence  of  the  subject; 
and  again  we  generalize  still  further,  and  ask, 
what  we  mean  by  saying  that  the  function  f{h) 
tends  to  the  limit  Z  as  ̂   tends  to  the  value  a. 

Now,  according  to  the  Weierstrassian  ex- 
planation the  whole  idea  of  h  tending  to  the 

value  a,  though  it  gives  a  sort  of  metaphorical 
picture  of  what  we  are  driving  at,  is  really  off 
the  point  entirely.     Indeed  it  is  fairly  obvious 
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that,  as  long  as  we  retain  anything  like  "ft 
tending  to  a,"  as  a  fundamental  idea,  we  are 
really  in  the  clutches  of  the  infinitely  small ; 
for  we  imply  the  notion  of  h  being  infinitely 
near  to  o.  This  is  just  what  we  want  to  get 
rid  of. 

Accordingly,  we  shall  yet  again  restate  our 
phrase  to  be  explained,  and  ask  what  we 
mean  by  saying  that  the  limit  of  the  function 
f{h)  at  a  is  /. 

The  limit  of  f{h)  at  a  is  a  property  of  the 

neighbourhood  of  a,  where  "  neighbourhood  " 
is  used  in  the  sense  defined  in  Chapter  XL 
during  the  discussion  of  the  continuity  of 
functions.  The  value  of  the  function  /(A)  at 
a  is  /(a) ;  but  the  limit  is  distinct  in  idea 
from  the  value,  and  may  be  different  from 
it,  and  may  exist  when  the  value  has  not 
been  defined.  We  shall  also  use  the  term 

"  standard  of  approximation  "  in  the  sense 
in  which  it  is  defined  in  Chapter  XL  In 

fact,  in  the  definition  of  "  continuity  "  given 
towards  the  end  of  that  chapter  we  have 
practically  defined  a  limit.  The  definition  of 
a  limit  is  : — 

A  function  j{x)  has  the  limit  Z  at  a  value 
a  of  its  argument  Xy  when  in  the  neighbour- 

hood of  a  its  values  approximate  to  Z  within 
every  standard  of  approximation. 

Compare  this  definition  with  that  already 
given  for  continuity,  namely  : — 
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A  function  f{x)  is  continuous  at  a  value  a 
of  its  argument,  when  in  the  neighbourhood 
of  a  its  values  approximate  to  its  value  at  a 
within  every  standard  of  approximation. 

It  is  at  once  evident  that  a  function  is  con- 
tinuous at  a  when  (i)  it  possesses  a  limit  at  a, 

and  (ii)  that  limit  is  equal  to  its  value  at  a. 
Thus  the  illustrations  of  continuity  which 
have  been  given  at  the  end  of  Chapter  XI.  are 
illustrations  of  the  idea  of  a  limit,  namely, 
they  were  all  directed  to  proving  that  /(a) 
was  the  limit  of  f{x)  at  a  for  the  functions 
considered  and  the  value  of  a  considered.  It 
is  really  more  instructive  to  consider  the 
limit  at  a  point  where  a  function  is  not  con- 

tinuous. For  example,  consider  the  function 
of  which  the  graph  is  given  in  fig.  20  of  Chap- 

ter XI.  This  function  f{x)  is  defined  to  have 
the  value  1  for  all  values  of  the  argument 
except  the  integers  1,  2,  3,  etc.,  and  for  these 
integral  values  it  has  the  value  0.  Now  let 
us  think  of  its  limit  when  x=S.  We  notice 
that  in  the  definition  of  the  limit  the  value 

of  the  function  at  a  (in  this  case,  a=3)  is  ex- 
cluded. But,  excluding  /(3),  the  values  of 

f{x),  when  x  lies  within  any  interval  which 
(i)  contains  3  not  as  an  end-point,  and  (ii) 
does  not  extend  so  far  as  2  and  4,  are  all 

equal  to  1  ;  and  hence  these  values  approxi- 
mate to  1  within  every  standard  of  approxi- 

mation.    Hence  1  is  the  limit  of  f{x)  at  the 
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value  3  of  the  argument  x^  but  by  definition 

/(3)=0. 
This  is  an  instance  of  a  function  which 

possesses  both  a  value  and  a  limit  at  the 
value  3  of  the  argument,  but  the  value  is  not 
equal  to  the  limit.  At  the  end  of  Chapter 
XI.  the  function  x^  was  considered  at  the 
value  2  of  the  argument.  Its  value  at  2  is  2-, 
i.e.  4,  and  it  was  proved  that  its  limit  is  also 
4.  Thus  here  we  have  a  function  with  a 

value  and  a  limit  which  are  equal. 
Finally  we  come  to  the  case  which  is  essen- 

tially important  for  our  purposes,  namely,  to 
a  function  which  possesses  a  limit,  but  no 
defined  value  at  a  certain  value  of  its  argu- 

ment.     We    need    not    go   far    to    look    for 
2(r 

such  a   function,  —  will  serve  our  purpose. X 

Now  in  any  mathematical  book,   we  might 
2x 

find    the    equation,    —  =2,    written    without 

hesitation  or  comment.     But  there  is  a  diflS- 

culty  in  this  ;  for  when  x  is  zero,  —  =  -  ;  and X      0 

-  has  no  defined  meaning.     Thus  the  value 
2x 

of  the  function  —    at  x=0  has  no  defined x 
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meaning.     But  for  every  other  value  of  x, 
2x 

the  value  of  the  function  —  is  2.     Thus  the 
X 

2iC 

limit  of  —  at  x~0  is  2,  and  it  has  no  value X 

x^ 

at  x=0.
    

 
Sim

ila
rly

  

the 
 
limi

t  
of  —  at  03= a  is X 

a  whatever  a  may  be,  so  that  the  limit  of 

x^  •  x^ 
—  at  x=0  is  0.     But  the  value  of  —  at  x=0 
X  X 

takes   the    form    -,    which    has    no    defined 

meaning.     Thus  the  function  —  has  a  limit X 

but  no  value  at  0. 
We  now  come  back  to  the  problem  from 

which  we  started  this  discussion  on  the  nature 
of  a  limit.  How  are  we  going  to  define  the 

rate  of  increase  of  the  function  x"^  at  any 
value  X  of  its  argument.  Our  answer  is  that 
this  rate  of  increase  is  the  limit  of  the  func- 

tion  :     at   the    value   zero   for   its 

argument  h.   (Note  that  x  is  here  a  "  con- 
stant.")    Let  us  see  how  this  answer  works 
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in  the  light  of  our  definition  of  a  limit.  We 
have 

{x+h)^-x^  _2hx+h^  _h{2x+h) 
h  ~      h  h 

Now  in  finding  the  limit  of        j^        at  the 

value  0  of  the  argument  h,  the  value  (if  any) 
of  the  function  at  /i=0  is  excluded.  But  for 
all  values  of  h,  except  h=0,  we  can  divide 

through  by  h.     Thus  the  limit  of    ̂   '  at 

h=0  is  the  same  as  that  of  2x-]-h  at  ̂ =0. 
Now,  whatever  standard  of  approximation  k 
we  choose  to  take,  by  considering  the  interval 
from  —\k  to  -\-\k  we  see  that,  for  values  of 
h  which  fall  within  it,  2x-\-h  differs  from  2cr 
by  less  than  |A;,  that  is  by  less  than  k.  This 
is  true  for  any  standard  k.  Hence  in  the  neigh- 

bourhood of  the  value  0  for  h,  2x  -{-h  approxi- 
mates to  2x  within  every  standard  of  approxi- 

mation, and  therefore  2x  is  the  limit  of  2x-^h 
at  /?  =0.     Hence  by  what  has  been  said  above 

2x  is  the  limit  of  ̂        !    at  the  value  0 n 

for  h.  It  follows,  therefore,  that  2x  is  what 
we  have  called  the  rate  of  increase  of  x^  at 
the  value  x  of  the  argument.  Thus  this 
method  conducts  us  to  the  same  rate  of  in- 
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crease  for  x^  as  did  the  Leibnizian  way  of 

making  h  grow  "  infinitely  small." 
The  more  abstract  terms  "  differential  co- 

efficient," or  "  derived  function,"  are  gener- 
ally used  for  what  we  have  hitherto  called  the 

"  rate  of  increase "  of  a  function.  The 
general  definition  is  as  follows  :  the  differ- 

ential coefficient  of  the  function  f{x)  is  the 

limit,  if  it  exist,  of  the  function  '~^— — ~ — '-^' h 

of  the  argument  h  at  the  value  0  of  its  argu- 
ment. 
How  have  we,  by  this  definition  and  the 

subsidiary  definition  of  a  limit,  really  managed 

to  avoid  the  notion  of  "  infinitely  small  num- 
bers "  which  so  worried  our  mathematical 

forefathers  ?  For  them  the  difficulty  arose 
because  on  the  one  hand  they  had  to  use  an 
interval  x  to  x-{-h  over  which  to  calculate 
the  average  increase,  and,  on  the  other  hand, 
they  finally  wanted  to  put  ̂ =0.  The  result 
was  they  seemed  to  be  landed  into  the  notion 
of  an  existent  interval  of  zero  size.  Now 
how  do  we  avoid  this  difficulty  ?  In  this 
way — we  use  the  notion  that  corresponding 
to  any  standard  of  approximation,  some  in- 

terval with  such  and  such  properties  can  be 
found.  The  difference  is  that  we  have 

grasped  the  importance  of  the  notion  of  "  the 
variable,"  and  they  had  not  done  so.     Thus, 
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at  the  end  of  our  exposition  of  the  essential 
notions  of  mathematical  analysis,  we  are  led 
back  to  the  ideas  with  which  in  Chapter  II. 
we  commenced  our  enquiry — that  in  mathe- 

matics the  fundamentally  important  ideas 

are  those  of  "  some  things "  and  "  any 
things." 



CHAPTER   XVI 

GEOMETRY 

Geometry,  like  the  rest  of  mathematics,  is 
abstract.  In  it  the  properties  of  the  shapes 
and  relative  positions  of  things  are  studied. 
But  we  do  not  need  to  consider  who  is  observ- 

ing the  things,  or  whether  he  becomes  ac- 
quainted with  them  by  sight  or  touch  or 

hearing.  In  short,  we  ignore  all  particular 
sensations.  Furthermore,  particular  things 
such  as  the  Houses  of  Parliament,  or  the 

terrestrial  globe  are  ignored.  Every  pro- 
position refers  to  any  things  with  such  and 

such  geometrical  properties.  Of  course  it 
helps  our  imagination  to  look  at  particular 
examples  of  spheres  and  cones  and  triangles 
and  squares.  But  the  propositions  do  not 
merely  apply  to  the  actual  figures  printed  in 
the  book,  but  to  any  such  figures. 

Thus  geometry,  like  algebra,  is  dominated 

by  the  ideas  of  "  any  "  and  "  some  "  things. 
Also,  in  the  same  way  it  studies  the  inter- 

relations of  sets  of  things.  For  example,  con- 
sider any  two  triangles  ABC  and  DEF. 

236 
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What  relations  must  exist  between  some  of 
the  parts  of  these  triangles,  in  order  that  the 
triangles  may  be  in  all  respects  equal  ?  This 
is  one  of  the  first  investigations  undertaken 
in  all  elementary  geometries.     It  is  a  study 

of  a  certain  set  of  possible  correlations  be- 
tween the  two  triangles.  The  answer  is  that 

the  triangles  are  in  all  respects  equal,  if  : — 
Either,  (a)  Two  sides  of  the  one  and  the  in- 

cluded angle  are  respectively  equal  to  two 
sides  of  the  other  and  the  included  angle  : 

Or,  (6)  Two  angles  of  the  one  and  the  side 
joining  them  are  respectively  equal  to  two 
angles  of  the  other  and  the  side  joining  them  : 

Or,  (c)  Three  sides  of  the  one  are  respect- 
tively  equal  to  three  sides  of  the  other. 

This  answer  at  once  suggests  a  further  en- 
quiry. What  is  the  nature  of  the  correlation 

between  the  triangles,  when  the  three  angles 
of  the  one  are  respectively  equal  to  the  three 
angles  of  the  other  ?  This  further  investiga- 

tion leads  us  on  to  the  whole  theory  of  simi- 
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larity  (cf.   Chapter  XIII.),  which  is  another 
type  of  correlation. 

Again,  to  take  another  example,  consider 
the  internal  structure  of  the  triangle  ABC. 

Its  sides  and  angles  are  inter-related — the 
greater  angle  is  opposite  to  the  greater  side, 
and  the  base  angles  of  an  isosceles  triangle 
are  equal.  If  we  proceed  to  trigonometry 
this  correlation  receives  a  more  exact  deter- 

mination in  the  familiar  shape 

sin  A     sin  B     sin  C 

a2  =  J2_|_  ̂ 2  _  26ccos^,  with  two  similar 
formulte. 

Also  there  is  the  still  simpler  correlation 
between  the  angles  of  the  triangle,  namely, 
that  their  sum  is  equal  to  two  right  angles  ; 
and  between  the  three  sides,  namely,  that  the 
sum  of  the  lengths  of  any  two  is  greater  than 
the  length  of  the  third 

Thus  the  true  method  to  study  geometry  is 
to  think  of  interesting  simple  figures,  such  as 
the  triangle,  the  parallelogram,  and  the  circle, 
and  to  investigate  the  correlations  between 
their  various  parts.  The  geometer  has  in  his 
mind  not  a  detached  proposition,  but  a  figure 

with  its  various  parts  mutually  inter-depend- 
ent. Just  as  in  algebra,  he  generalizes  the 

triangle  into  the  polygon,  and  the  side  into 
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the  conic  section.  Or,  pursuing  a  converse 
route,  he  classifies  triangles  according  as  they 
are  equilateral,  isosceles,  or  scalene,  and 
polygons  according  to  their  number  of  sides, 
and  conic  sections  according  as  they  are  hy- 

perbolas, ellipses,  or  parabolas. 
The  preceding  examples  illustrate  how  the 

fundamental  ideas  of  geometry  are  exactly 
the  same  as  those  of  algebra  ;  except  that 
algebra  deals  with  numbers  and  geometry 

with  lines,  angles,  areas,  and  other  geo- 
metrical entities.  This  fundamental  identity 

is  one  of  the  reasons  why  so  many  geometrical 
truths  can  be  put  into  an  algebraic  dress. 
Thus  if  A,  B,  and  C  are  the  numbers  of  degrees 
respectively  in  the  angles  of  the  triangle  ABC, 
the  correlation  between  the  angles  is  repre- 

sented by  the  equation 

^+B+C=180°; 
and  if  a,  b,  c  are  the  number  of  feet  respectively 
in  the  three  sides,  the  correlation  between  the 

sides  is  represented  by  a  <jb-\-c,  b  <(c-|-a, 
c  <(a+6.  Also  the  trigonometrical  formulas 
quoted  above  are  other  examples  of  the  same 
fact.  Thus  the  notion  of  the  variable  and 

the  correlation  of  variables  is  just  as  essential 
in  geometry  as  it  is  in  algebra. 

But  the  parallelism  between  geometry  and 
algebra  can  be  pushed  still  further,  owing  to 
the  fact  that  lengths,   areas,   volumes,  and 
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angles  are  all  measurable  ;  so  that,  for  exam- 
ple, the  size  of  any  length  can  be  determined 

by  the  number  (not  necessarily  integral)  of 
times  which  it  contains  some  arbitrarily  known 
unit,  and  similarly  for  areas,  volumes,  and 
angles.  The  trigonometrical  formulae,  given 
above,  are  examples  of  this  fact.  But  it  re- 

ceives its  crowning  application  in  analytical 
geometry.  This  great  subject  is  often  mis- 

named as  Analytical  Conic  Sections,  thereby 
fixing  attention  on  merely  one  of  its  sub- 

divisions. It  is  as  though  the  great  science 
of  Anthropology  were  named  the  Study  of 
Noses,  owing  to  the  fact  that  noses  are  a 
prominent  part  of  the  human  body. 
Though  the  mathematical  procedures  in 

geometry  and  algebra  are  in  essence  identical 
and  intertwined  in  their  development,  there 
is  necessarily  a  fundamental  distinction  be- 

tween the  properties  of  space  and  the  proper- 
ties of  number — in  fact  all  the  essential  differ- 

ence between  space  and  number.  The  "  spaci- 
ness "  of  space  and  the  "  numerosity "  of 
number  are  essentially  different  things,  and 
must  be  directly  apprehended.  None  of  the 
applications  of  algebra  to  geometry  or  of 
geometry  to  algebra  go  any  step  on  the  road 
to  obliterate  this  vital  distinction. 

One  very  marked  difference  between  space 
and  number  is  that  the  former  seems  to  be  so 
much  less  abstract  and  fundamental  than  the 
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latier.  The  number  of  the  archangels  can  be 
counted  just  because  they  are  things.  When 
we  once  know  that  their  names  are  Raphael, 
Gabriel,  and  Michael,  and  that  these  distinct 

names  represent  distinct  beings,  we  know  with- 
out further  question  that  there  are  three  of 

them.  All  the  subtleties  in  the  world  about 

the  nature  of  angelic  existences  cannot  alter 
this  fact,  granting  the  premisses. 

But  we  are  still  quite  in  the  dark  as  to  their 
relation  to  space.  Do  they  exist  in  space  at 
all  ?  Perhaps  it  is  equally  nonsense  to  say 
that  they  are  here,  or  there,  or  anywhere,  or 
everywhere.  Their  existence  may  simply  have 

no  relation  to  localities  in  space.  According- 
ly, while  numbers  must  apply  to  all  things, 

space  need  not  do  so. 
The  perception  of  the  locality  of  things 

would  appear  to  accompany,  or  be  involved 
in  many,  or  all,  of  our  sensations.  It  is  in- 

dependent of  any  particular  sensation  in  the 
sense  that  it  accompanies  many  sensations. 
But  it  is  a  special  peculiarity  of  the  things 
which  we  apprehend  by  our  sensations.  The 
direct  apprehension  of  what  we  mean  by  the 
positions  of  things  in  respect  to  each  other 

is  a  thing  sui  generis,  just  as  are  the  appre- 
hensions of  sounds,  colours,  tastes,  and  smells. 

At  first  sight  therefore  it  would  appear  that 
mathemxatics,  in  so  far  as  it  includes  geometry 
in  its  scope,  is  not  abstract  in  the  sense  in 
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which    abstractness     is    ascribed    to    it    in 
Chapter  I. 

This,  however,  is  a  mistake ;  the  truth  being 

that  the  "  spaciness  "  of  space  does  not  enter 
into  our  geometrical  reasoning  at  all.  It 
enters  into  the  geometrical  intuitions  of 
mathematicians  in  ways  personal  and  peculiar 
to  each  individual.  But  what  enter  into  the 

reasoning  are  merely  certain  properties  of 
things  in  space,  or  of  things  forming  space, 
which  properties  are  completely  abstract  in 
the  sense  in  which  abstract  was  defined  in 

Chapter  I. ;  these  properties  do  not  involve 

any  peculiar  space-apprehension  or  space- 
intuition  or  space-sensation.  They  are  on 
exactly  the  same  basis  as  the  mathematical 

properties  of  number.  Thus  the  space-intui- 
tion which  is  so  essential  an  aid  to  the  study 

of  geometry  is  logically  irrelevant :  it  does 
not  enter  into  the  premisses  when  they  are 

properly  stated,  nor  into  any  step  of  the  rea- 
soning. It  has  the  practical  importance  of  an 

example,  which  is  essential  for  the  stimulation 

of  our  thoughts.  Examples  are  equally  neces- 
sary to  stimulate  our  thoughts  on  number. 

When  we  think  of  "  two  "  and  "  three  "  we 
see  strokes  in  a  row,  or  balls  in  a  heap,  or 
some  other  physical  aggregation  of  particular 
things.  The  peculiarity  of  geometry  is  the 
fixity  and  overwhelming  importance  of  the 
one  particular  example  which  occurs  to  our 
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minds.  The  abstract  logical  form  of  the 

propositions  when  fully  stated  is,  "  If  any 
collections  of  things  have  such  and  such 
abstract  properties,  they  also  have  such  and 

such  other  abstract  properties."  But  what 
appears  before  the  mind's  eye  is  a  collection 
of  points,  lines,  surfaces,  and  volumes  in  the 
space  :  this  example  inevitably  appears,  and 

is  the  sole  example  which  lends  to  the  propo- 
sition its  interest.  However,  for  all  its  over- 

whelming importance,  it  is  but  an  example. 
Geometry,  viewed  as  a  mathematical  science, 

is  a  division  of  the  more  general  science  of 

order.  It  may  be  called  the  science  of  dimen- 

sional order  ;  the  qualification  "  dimensional  " 
has  been  introduced  because  the  limitations, 
which  reduce  it  to  only  a  part  of  the  general 
science  of  order,  are  such  as  to  produce  the 
regular  relations  of  straight  lines  to  planes, 
and  of  planes  to  the  whole  of  space. 

It  is  easy  to  understand  the  practical  im- 
portance of  space  in  the  formation  of  the 

scientific  conception  of  an  external  physical 

world.  On  the  one  hand  our  space-percep- 
tions are  intertwined  in  our  various  sensations 

and  connect  them  together.  We  normally 
judge  that  we  touch  an  object  in  the  same 
place  as  we  see  it ;  and  even  in  abnormal 
cases  we  touch  it  in  the  same  space  as  we  see 
it,  and  this  is  the  real  fundamental  fact  which 
ties  together  our  various  sensations.     Accord- 
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ingly,  the  space  perceptions  are  in  a  sense  the 
common  part  of  our  sensations.  Again  it 
happens  that  the  abstract  properties  of  space 
form  a  large  part  of  whatever  is  of  spatial 
interest.  It  is  not  too  much  to  say  that  to 
every  property  of  space  there  corresponds  an 
abstract  mathematical  statement.  To  take 
the  most  unfavourable  instance,  a  curve  may 
have  a  special  beauty  of  shape  :  but  to  this 
shape  there  will  correspond  some  abstract 
mathematical  properties  which  go  with  this 
shape  and  no  others. 

Thus  to  sum  up  :  (1)  the  properties  of  space 
which  are  investigated  in  geometry,  like  those 
of  number,  are  properties  belonging  to  things 
as  things,  and  without  special  reference  to 
any  particular  mode  of  apprehension;  (2) 
Space-perception  accompanies  our  sensations, 
perhaps  all  of  them,  certainly  many ;  but  it 
does  not  seem  to  be  a  necessary  quality  of 
things  that  they  should  all  exist  in  one  space 
or  in  any  space. 
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QUANTITY 

In  the  previous  chapter  we  pointed  out 
that  lengths  are  measurable  in  terms  of  some 
unit  length,  areas  in  term  of  a  unit  area,  and 
volumes  in  terms  of  a  unit  volume. 
When  we  have  a  set  of  things  such  as 

lengths  which  are  measurable  in  terms  of  any 
one  of  them,  we  say  that  they  are  quantities 
of  the  same  kind.  Thus  lengths  are  quantities 
of  the  same  kind,  so  are  areas,  and  so  are 
volumes.  But  an  area  is  not  a  quantity  of 
the  same  kind  as  a  length,  nor  is  it  of  the 
same  kind  as  a  volume.  Let  us  think  a  little 
more  on  what  is  meant  by  being  measurable, 
taking  lengths  as  an  example. 

Lengths  are  measured  by  the  foot-rule.  By 
transporting  the  foot-rule  from  place  to  place 
we  judge  of  the  equality  of  lengths.  Again, 
three  adjacent  lengths,  each  of  one  foot,  form 
one  whole  length  of  three  feet.  Thus  to 
measure  lengths  we  have  to  determine  the 
equality  of  lengths  and  the  addition  of  lengths. 
When  some  test  has  been  applied,  such  as  the 
transporting  of  a  foot-rule,  we  say  that  the 
lengths  are  equal ;    and  when  some  process 

246 
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has  been  applied,  so  as  to  secure  lengths  being 
contiguous  and  not  overlapping,  we  say  that 
the  lengths  have  been  added  to  form  one 
whole  length.  But  we  cannot  arbitrarily  take 
any  test  as  the  test  of  equality  and  any 
process  as  the  process  of  addition.  The  re- 

sults of  operations  of  addition  and  of  judg- 
ments of  equality  must  be  in  accordance  with 

certain  preconceived  conditions.  For  exam- 
ple, the  addition  of  two  greater  lengths  must 

yield  a  length  greater  than  that  yielded  by 
the  addition  of  two  smaller  lengths.  These 
preconceived  conditions  when  accurately  for- 

mulated may  be  called  axioms  of  quantity. 
The  only  question  as  to  their  truth  or  falsehood 
which  can  arise  is  whether,  when  the  axioms 
are  satisfied,  we  necessarily  get  what  ordinary 
people  call  quantities.  If  we  do  not,  then 

the  name  "  axioms  of  quantity  "  is  ill-judged 
— that  is  all. 

These  axioms  of  quantity  are  entirely  ab- 
stract, just  as  are  the  mathematical  properties 

of  space.  They  are  the  same  for  all  quantities, 
and  they  presuppose  no  special  mode  of  per- 

ception. The  ideas  associated  with  the  notion 
of  quantity  are  the  means  by  which  a  con- 

tinuum like  a  line,  an  area,  or  a  volume  can 
be  split  up  into  definite  parts.  Then  these 
parts  are  counted  ;  so  that  numbers  can  be 
used  to  determine  the  exact  properties  of  a 
continuous  whole. 
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Our  perception  of  the  flow  of  time  and  of 
the  succession  of  events  is  a  chief  example 
of  the  application  of  these  ideas  of  quantity. 
We  measure  time  (as  has  been  said  in  con- 

sidering periodicity)  by  the  repetition  of 
similar  events — the  burning  of  successive 
inches  of  a  uniform  candle,  the  rotation  of 
the  earth  relatively  to  the  fixed  stars,  the 
rotation  of  the  hands  of  a  clock  are  all  ex- 

amples of  such  repetitions.  Events  of  these 

types  take  the  place  of  the  foot-rule  in  rela- 
tion to  lengths.  It  is  not  necessary  to  assume 

that  events  of  any  one  of  these  types  are 
exactly  equal  in  duration  at  each  recurrence. 
What  is  necessary  is  that  a  rule  should  be 
known  which  will  enable  us  to  express  the 
relative  durations  of,  say,  two  examples  of 
some  type.  For  example,  we  may  if  we  like 

suppose  that  the  rate  of  the  earth's  rotation 
is  decreasing,  so  that  each  day  is  longer  than 
the  preceding  by  some  minute  fraction  of  a 
second.  Such  a  rule  enables  us  to  compare 
the  length  of  any  day  with  that  of  any  other 
day.  But  what  is  essential  is  that  one  series 
of  repetitions,  such  as  successive  days,  should 
be  taken  as  the  standard  series  ;  and,  if  the 
various  events  of  that  series  are  not  taken  as 

of  equal  duration,  that  a  rule  should  be 
stated  which  regulates  the  duration  to  be 
assigned  to  each  day  in  terms  of  the  duration 
of  any  other  day. 
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What  then  are  the  requisites  which  such 
a  rule  ought  to  have  ?  In  the  first  place  it 
should  lead  to  the  assignment  of  nearly  equal 
durations  to  events  which  common  sense 
judges  to  possess  equal  durations.  A  rule 
which  made  days  of  violently  different  lengths, 
and  which  made  the  speeds  of  apparently 
similar  operations  vary  utterly  out  of  pro- 

portion to  the  apparent  minuteness  of  their 
differences,  would  never  do.  Hence  the  first 
requisite  is  general  agreement  with  common 
sense.  But  this  is  not  sufficient  absolutely 
to  determine  the  rule,  for  common  sense  is  a 
rough  observer  and  very  easily  satisfied.  The 
next  requisite  is  that  minute  adjustments  of 
the  rule  should  be  so  made  as  to  allow  of  the 
simplest  possible  statements  of  the  laws  of 
nature.  For  example,  astronomers  tell  us 

that  the  earth's  rotation  is  slowing  down,  so 
that  each  day  gains  in  length  by  some  incon- 

ceivably minute  fraction  of  a  second.  Their 
only  reason  for  their  assertion  (as  stated  more 
fully  in  the  discussion  of  periodicity)  is  that 
without  it  they  would  have  to  abandon  the 
Newtonian  laws  of  motion.  In  order  to  keep 
the  laws  of  motion  simple,  they  alter  the 
measure  of  time.  This  is  a  perfectly  legiti- 

mate procedure  so  long  as  it  is  thoroughly 
understood. 

What  has  been  said  above  about  the  ab- 
stract nature  of  the  mathematical  properties 
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of  space  applies  with  appropriate  verbal 
changes  to  the  mathematical  properties  of 
time.  A  sense  of  the  flux  of  time  accompanies 

all  our  sensations  and  perceptions,  and  prac- 
tically all  that  interests  us  in  regard  to  time 

can  be  paralleled  by  the  abstract  mathe- 
matical properties  which  we  ascribe  to  it. 

Conversely  what  has  been  said  about  the  two 
requisites  for  the  rule  by  which  we  determine 
the  length  of  the  day,  also  applies  to  the  rule 

for  determining  the  length  of  a  yard  measure — 
namely,  the  yard  measure  appears  to  retain 

the  same  length  as  it  moves  about.  Accord- 
ingly, any  rule  must  bring  out  that,  apart 

from  minute  changes,  it  does  remain  of  in- 
variable length.  Again,  the  second  requisite 

is  this,  a  definite  rule  for  minute  changes 
shall  be  stated  which  allows  of  the  simplest 

expression  of  the  laws  of  nature.  For  ex- 
ample, in  accordance  with  the  second  re- 
quisite the  yard  measures  are  supposed  to 

expand  and  contract  with  changes  of  tem- 
perature according  to  the  substances  which 

they  are  made  of. 
Apart  from  the  facts  that  our  sensations 

are  accompanied  with  perceptions  of  locality 
and  of  duration,  and  that  lines,  areas,  volumes, 

and  durations,  are  each  in  their  way  quanti- 
ties, the  theory  of  numbers  would  be  of  very 

subordinate  use  in  the  exploration  of  the  laws 
of  the  Universe.     As  it  is,  physical  science 
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reposes  on  the  main  ideas  of  number,  quan- 
tity, space,  and  time.  The  mathematical 

sciences  associated  with  them  do  not  form 
the  whole  of  mathematics,  but  they  are  the 
substratum  of  mathematical  physics  as  at 
present  existing. 
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NOTE    ON    THE    STUDY    OF    MATHEMATICS 

The  difficulty  that  beginners  find  in  the  study  of  tliis 
science  is  due  to  the  large  amount  of  technical  detail  which 
has  been  allowed  to  accumulate  in  the  elementary  text- 

books, obscuring  the  important  ideas. 
The  first  subjects  of  study,  apart  from  a  knowledge  of 

arithmetic  which  is  presupposed,  must  be  elementary 
geometry  and  elementary  algebra.  The  courses  in  both 
subjects  should  be  short,  giving  only  the  necessary  ideas  ; 
the  algebra  should  be  studied  graphically,  so  that  in  practice 
the  ideas  of  elementary  coordinate  geometry  are  also  being 

assimilated.  The  next  pair  of  subjects  should  be  ele- 
mentary trigonometry  and  the  coordinate  geometry  of 

the  straight  line  and  circle.  The  latter  subject  is  a  short 
one  ;  for  it  really  merges  into  the  algebra.  The  student 
is  then  prepared  to  enter  upon  conic  sections,  a  very  short 
course  of  geometrical  conic  sections  and  a  longer  one  of 
analytical  conies.  But  in  all  these  courses  great  care 
should  be  taken  not  to  overload  the  mind  with  more 

detail  than  is  necessary  for  the  exemplification  of  the 
fundamental  ideas. 

The  differential  cedculus  and  afterwards  the  integral 
calculus  now  remain  to  be  attacked  on  the  same  system. 
A  good  teacher  will  already  have  illustrated  them  by  the 
consideration  of  special  csises  in  the  course  on  algebra 
and  coordinate  geometry.  Some  short  book  on  three 
dimensional  geometry  must  also  be  read. 

This  elementary  course  of  mathematics  is  sufficient  for 
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some  types  of  professional  career.  It  is  also  the  necessary 
preliminary  for  any  one  wishing  to  study  the  subject  for  its 
intrinsic  interest.  He  is  now  prepared  to  commence  on  a 
more  extended  course.  He  must  not,  however,  hope  to  be 
able  to  master  it  as  a  whole.  The  science  has  grown  to 

such  vEkSt  proportions  that  probably  no  living  mathe- 
matician can  claim  to  have  achieved  this. 

Passing  to  the  serious  treatises  on  the  subject  to  be  read 

after  this  preliminary  course,  the  following  may  be  men- 

tioned :  Cremona's  Pure  Geometry  (English  Translation, 
Clarendon  Press,  Oxford),  Hobson's  Treatise  on  Trigono- 

metry, Chrystal's  Treatise  on  Algebra  (2  volumes),  Salmon's 
Conic  Sections,  Lamb's  Differential  Calculus,  and  some  book 
on  Differential  Equations.  The  student  will  probably  not 
desire  to  direct  equal  attention  to  all  these  subjects,  but 
will  study  one  or  more  of  them,  according  as  his  interest 

dictates.  He  will  then  be  prepared  to  select  more  ad- 
vanced works  for  himself,  and  to  plunge  into  the  higher 

parts  of  the  subject.  If  his  interest  lies  in  analysis,  he 
should  now  master  an  elementary  treatise  on  the  theory 
of  Fractions  or  the  Complex  Variable  ;  if  he  prefers  to 
specialize  in  Geometry,  he  must  now  proceed  to  the 
standard  treatises  on  the  Analytical  Greometry  of  three 
dimensions.  But  at  this  stage  of  his  career  in  learning 

he  will  not  require  the  advice  of  this  note. 
I  have  deliberately  refrained  from  mentioning  any 

elementary  works.  They  are  very  numerous,  and  of 
various  merits,  but  none  of  such  outstanding  superiority  as 

to  require  special  mention  by  name  to  the  exclusion  of  all 
the  others. 
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